From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan.
Arterioscler Thromb Vasc Biol. 2014 Jun;34(6):1171-8. doi: 10.1161/ATVBAHA.113.302670. Epub 2014 Mar 27.
Low-density lipoprotein receptor (LDLR) is degraded by inducible degrader of LDLR (Idol) and protein convertase subtilisin/kexin type 9 (PCSK9), thereby regulating circulating LDL levels. However, it remains unclear whether, and if so how, these LDLR degraders affect each other. We therefore investigated effects of liver-specific expression of Idol on LDL/PCSK9 metabolism in mice and hamsters.
Injection of adenoviral vector expressing Idol (Ad-Idol) induced a liver-specific reduction in LDLR expression which, in turn, increased very-low-density lipoprotein/LDL cholesterol levels in wild-type mice because of delayed LDL catabolism. Interestingly, hepatic Idol overexpression markedly increased plasma PCSK9 levels. In LDLR-deficient mice, plasma PCSK9 levels were already elevated at baseline and unchanged by Idol overexpression, which was comparable with the observation for Ad-Idol-injected wild-type mice, indicating that Idol-induced PCSK9 elevation depended on LDLR. In wild-type mice, but not in LDLR-deficient mice, Ad-Idol enhanced hepatic PCSK9 expression, with activation of sterol regulatory element-binding protein 2 and subsequently increased expression of its target genes. Supporting in vivo findings, Idol transactivated PCSK9/LDLR in sterol regulatory element-binding protein 2/LDLR-dependent manners in vitro. Furthermore, an in vivo kinetic study using (125)I-labeled PCSK9 revealed delayed clearance of circulating PCSK9, which could be another mechanism. Finally, to extend these findings into cholesteryl ester transfer protein-expressing animals, we repeated the above in vivo experiments in hamsters and obtained similar results.
A vicious cycle in LDLR degradation might be generated by PCSK9 induced by hepatic Idol overexpression via dual mechanisms: sterol regulatory element-binding protein 2/LDLR. Furthermore, these effects would be independent of cholesteryl ester transfer protein expression.
低密度脂蛋白受体(LDLR)可被 LDLR 的诱导降解物(Idol)和蛋白水解酶枯草杆菌蛋白酶/凝血酶 9(PCSK9)降解,从而调节循环 LDL 水平。然而,目前尚不清楚这些 LDLR 降解物是否相互影响,以及如果存在相互影响,其影响机制如何。因此,我们研究了肝脏特异性表达 Idol 对小鼠和仓鼠 LDL/PCSK9 代谢的影响。
注射表达 Idol 的腺病毒载体(Ad-Idol)可诱导肝脏特异性 LDLR 表达减少,进而由于 LDL 代谢延迟,导致野生型小鼠极低密度脂蛋白/LDL 胆固醇水平升高。有趣的是,肝内 Idol 过表达显著增加了血浆 PCSK9 水平。在 LDLR 缺陷型小鼠中,PCSK9 水平在基线时已经升高,且 Idol 过表达后无变化,这与 Ad-Idol 注射的野生型小鼠的观察结果相似,表明 Idol 诱导的 PCSK9 升高依赖于 LDLR。在野生型小鼠中,但在 LDLR 缺陷型小鼠中,Ad-Idol 增强了肝 PCSK9 表达,激活固醇调节元件结合蛋白 2(SREBP2),随后增加其靶基因的表达。体外实验中,Idol 以 SREBP2/LDLR 依赖的方式转激活 PCSK9/LDLR,支持体内发现。此外,使用(125)I 标记的 PCSK9 进行的体内动力学研究表明,循环 PCSK9 的清除延迟,这可能是另一种机制。最后,为了将这些发现扩展到胆固醇酯转移蛋白表达的动物中,我们在仓鼠中重复了上述体内实验,得到了类似的结果。
肝 Idol 过表达诱导的 PCSK9 通过两种机制(SREBP2/LDLR)产生 LDLR 降解的恶性循环。此外,这些影响可能不依赖于胆固醇酯转移蛋白的表达。