Bialecki Jason B, Weisbecker Carl S, Attygalle Athula B
Center for Mass Spectrometry, Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07307, USA.
J Am Soc Mass Spectrom. 2014 Jun;25(6):1068-78. doi: 10.1007/s13361-014-0865-4. Epub 2014 Mar 28.
Collision-induced fragmentation of protonated N-alkyl-p-toluenesulfonamides primarily undergo either an elimination of the amine to form CH3-(C6H4)-SO2(+) cation (m/z 155) or an alkene to form a cation for the protonated p-toluenesulfonamide (m/z 172). To comprehend the fragmentation pathways, several deuterated analogs of N-decyl-p-toluenesulfonamides were prepared and evaluated. Hypothetically, two mechanisms, both of which involve ion-neutral complexes, can be envisaged. In one mechanism, the S-N bond fragments to produce an intermediate [sulfonyl cation/amine] complex, which dissociates to afford the m/z 155 cation (Pathway A). In the other mechanism, the C-N bond dissociates to produce a different intermediate complex. The fragmentation of this [p-toluenesulfonamide/carbocation] complex eliminates p-toluenesulfonamide and releases the carbocation (Pathway B). Computations carried out by the Hartree-Fock method suggested that the Pathway B is more favorable. However, a peak for the carbocation is observed only when the carbocation formed is relatively stable. For example, the spectrum of N-phenylethyl-p-toluenesulfonamide is dominated by the peak at m/z 105 for the incipient phenylethyl cation, which rapidly isomerizes to the remarkably stable methylbenzyl cation. The peaks for the carbocations are weak or absent in the spectra of most of N-alkyl-p-toluenesulfonamides because alkyl carbocations, such as the decyl cation, rearrange to more stable secondary cations by 1,2-hydride and alkyl shifts. The energy freed is not dissipated, but gets internalized, causing the carbocation to dissociate either by transferring a proton to the sulfonamide or by releasing smaller alkenes to form smaller carbocations. The loss of the positional integrity in this way was proven by deuterium labeling experiments.
质子化的N - 烷基 - 对甲苯磺酰胺的碰撞诱导碎片化主要经历两种过程,要么消除胺形成CH3-(C6H4)-SO2(+)阳离子(m/z 155),要么消除烯烃形成质子化对甲苯磺酰胺的阳离子(m/z 172)。为了理解碎片化途径,制备并评估了几种N - 癸基 - 对甲苯磺酰胺的氘代类似物。假设可以设想两种机制,这两种机制都涉及离子 - 中性复合物。在一种机制中,S - N键断裂产生中间体[磺酰阳离子/胺]复合物,该复合物解离得到m/z 155阳离子(途径A)。在另一种机制中,C - N键解离产生不同的中间体复合物。这种[对甲苯磺酰胺/碳正离子]复合物的碎片化消除对甲苯磺酰胺并释放碳正离子(途径B)。通过Hartree - Fock方法进行的计算表明途径B更有利。然而,只有当形成的碳正离子相对稳定时才会观察到碳正离子的峰。例如,N - 苯乙基 - 对甲苯磺酰胺的光谱中,初始苯乙基阳离子在m/z 105处的峰占主导,该阳离子迅速异构化为非常稳定的甲基苄基阳离子。在大多数N - 烷基 - 对甲苯磺酰胺的光谱中,碳正离子的峰很弱或不存在,因为烷基碳正离子,如癸基阳离子,通过1,2 - 氢化物和烷基迁移重排为更稳定的仲碳正离子。释放的能量不会消散,而是被内部化,导致碳正离子通过将质子转移到磺酰胺上或通过释放较小的烯烃形成较小的碳正离子而解离。通过氘标记实验证明了这种位置完整性的丧失。