Suppr超能文献

预测口咽癌和口腔癌术后并发症的算法

Algorithm to predict postoperative complications in oropharyngeal and oral cavity carcinoma.

作者信息

Santoro Luigi, Tagliabue Marta, Massaro Maria Angela, Ansarin Mohssen, Calabrese Luca, Giugliano Gioacchino, Alterio Daniela, Cossu Rocca Maria, Grosso Enrica, Plànicka Marek, Benazzo Marco, Chiesa Fausto

机构信息

Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy.

出版信息

Head Neck. 2015 Apr;37(4):548-56. doi: 10.1002/hed.23637.

Abstract

BACKGROUND

Preoperative data in patients with oral cavity/oropharyngeal cancer may predict postoperative complications that may modify therapeutic choices and improve patient care.

METHOD

We reviewed 320 consecutive patients with oral cavity/oropharyngeal cancer, operated on 2003 through 2006 at the European Institute of Oncology. By multivariate analysis of preoperative patient and tumor characteristics, we developed an algorithm to predict postoperative complications. We tested the algorithm on a new series of 307 patients operated on 2007 through 2010.

RESULTS

The final algorithm used to produce a nomogram was comprised of: alcohol consumption (p = .01), site of primary (p = .03), interaction of clinical T classification to sex (p = .007), and type of neck dissection (p < .0001). The algorithm had good ability to predict complications (concordance index [c-index] 0.74) in the new series.

CONCLUSION

The nomogram accurately predicts presurgical risk of postoperative local/systemic complications in patients with oral cavity/oropharyngeal cancer and can be used to adapt therapy to patient characteristics, optimize ward admissions, and improve care.

摘要

背景

口腔/口咽癌患者的术前数据可预测术后并发症,这些并发症可能会改变治疗选择并改善患者护理。

方法

我们回顾了2003年至2006年在欧洲肿瘤研究所接受手术的320例连续的口腔/口咽癌患者。通过对术前患者和肿瘤特征进行多变量分析,我们开发了一种预测术后并发症的算法。我们在2007年至2010年接受手术的307例新患者系列中测试了该算法。

结果

用于生成列线图的最终算法包括:饮酒情况(p = 0.01)、原发部位(p = 0.03)、临床T分类与性别之间的相互作用(p = 0.007)以及颈清扫类型(p < 0.0001)。该算法在新系列中具有良好的并发症预测能力(一致性指数[c-index]为0.74)。

结论

列线图可准确预测口腔/口咽癌患者术前发生术后局部/全身并发症的风险,并可用于根据患者特征调整治疗方案、优化病房收治并改善护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验