Suppr超能文献

细胞核簇自动分割准确性对甲状腺滤泡性病变分类的影响

Impact of the accuracy of automatic segmentation of cell nuclei clusters on classification of thyroid follicular lesions.

作者信息

Jung Chanho, Kim Changick

机构信息

IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-Gu, Daejeon, 305-700, Republic of Korea.

出版信息

Cytometry A. 2014 Aug;85(8):709-18. doi: 10.1002/cyto.a.22467. Epub 2014 Mar 27.

Abstract

Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions.

摘要

细胞核簇的自动分割是显微镜细胞图像定量分析系统中的关键组成部分。因此,在过去十年中它受到了极大的关注,并且文献中已经提出了各种在不同测试条件下具有不同性能水平的自动分割聚类细胞核的方法。然而,据我们所知,到目前为止还没有对这些方法进行比较研究。本研究是填补这一研究空白的首次尝试。更确切地说,本研究的目的是对现有的最先进分割方法进行客观的性能比较。特别是,在相同实验条件下,还“定量”研究了它们的准确性对甲状腺滤泡性病变分类的影响,以评估这些方法的适用性。比较了13种不同的分割方法,不仅比较了细胞核分割和描绘中的误差,还比较了它们使用不同指标(如诊断准确性、敏感性、特异性等)对甲状腺滤泡性病变分类系统性能的影响。对总共204份数字化甲状腺活检标本进行了广泛的实验。我们的研究表明,使用更先进的分割方法可以避免重大的诊断错误。我们相信,这项全面的比较研究为开发人员和从业人员在选择适用于构建专门用于分类甲状腺滤泡性病变的自动化系统的自动分割技术时提供了一个参考点和指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验