Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zurich , Leonhardstraße 27, 8092 Zurich, Switzerland.
Environ Sci Technol. 2014 May 6;48(9):5322-8. doi: 10.1021/es405668f. Epub 2014 Apr 15.
In this work, we report the development of a synthetic CO2 sorbent that possesses a high cyclic CO2 uptake capacity and, in addition, sufficient mechanical strength to allow it to be used in fluidized-bed reactors. To overcome the problem of elutriation of the original powdered material, the synthetic CO2 sorbent was pelletized. An important aspect of this work was to assess the effect of steam on the cyclic CO2 capture capacity of the original, powdered CO2 sorbent and the pelletized material. After 30 cycles of repeated calcination and carbonation reactions conducted in a fluidized bed, the CO2 uptake of the pellets was 0.29 g of CO2/g of sorbent, a value that is 45% higher than that measured for the reference limestone. For the case that carbonation/calcination cycles were conducted in a thermogravimetric analyzer under steam-free carbonation conditions, the CO2 uptake of the best sorbent was 0.33 g of CO2/g of sorbent (after 10 cycles). Importantly, it should be noted that, after 10 cycles using wet carbonation conditions, the CO2 uptake of this material increased by 55% when compared to dry conditions. This observation was attributed to enhanced solid-state diffusion in the CaCO3 product layer under wet conditions. However, independent of the reaction conditions, the pelletized material showed a lower cyclic CO2 uptake when compared to the original powder. A detailed morphological characterization of the pellets indicated that the destruction of the primary, hollow micrometer-sized spheres during pelletization was responsible for the lower cyclic CO2 uptake of the pellets.
在这项工作中,我们开发了一种具有高循环 CO2 吸收能力的合成 CO2 吸收剂,此外,它还具有足够的机械强度,可用于流化床反应器。为了克服原始粉末材料的扬析问题,将合成 CO2 吸收剂制成了颗粒。这项工作的一个重要方面是评估蒸汽对原始粉末 CO2 吸收剂和颗粒材料的循环 CO2 捕集能力的影响。在流化床中进行 30 次重复煅烧和碳酸化反应循环后,颗粒的 CO2 吸收量为 0.29 g CO2/g 吸收剂,比参考石灰石高 45%。对于在无蒸汽碳酸化条件下在热重分析仪中进行碳酸化/煅烧循环的情况,最佳吸收剂的 CO2 吸收量为 0.33 g CO2/g 吸收剂(经过 10 次循环)。重要的是,应该注意的是,在使用湿碳酸化条件进行 10 次循环后,与干燥条件相比,该材料的 CO2 吸收量增加了 55%。这一观察结果归因于湿条件下 CaCO3 产物层中固相扩散的增强。然而,无论反应条件如何,与原始粉末相比,颗粒材料的循环 CO2 吸收量都较低。对颗粒的详细形态表征表明,在制粒过程中破坏原始的中空微米级球体是导致颗粒循环 CO2 吸收量较低的原因。