Suppr超能文献

人SOD1-G93A基因对NSC-34细胞中Nrf2/ARE信号通路的影响。

Effect of the human SOD1-G93A gene on the Nrf2/ARE signaling pathway in NSC-34 cells.

作者信息

Wang Fumin, Lu Yucheng, Qi Faying, Su Quanping, Wang Long, You Cuiping, Che Fengyuan, Yu Jixu

机构信息

Department of Clinical Neurology, School of Neurology, Weifang Medical University, Weifang, Shandong 261053, P.R. China.

Central Laboratory, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China.

出版信息

Mol Med Rep. 2014 Jun;9(6):2453-8. doi: 10.3892/mmr.2014.2087. Epub 2014 Mar 28.

Abstract

UNLABELLED

Dominant mutations in superoxide dismutase 1 (SOD1) are a frequent cause of the lethal neurodegenerative disease amyotrophic lateral sclerosis (ALS). The nuclear factor erythroid 2‑related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is the major cellular defense mechanism against oxidative stress, however, its role in ALS remains to be fully elucidated. Therefore, the present study aimed to investigate whether the human SOD1-G93A gene affected the Nrf2/ARE signaling pathway in an ALS cell model. The soma became round and the number of neurites decreased in the NSC-34 cells transfected with the hSOD1-G93A gene, and the neurites were shorter and oxidative stress was increased compared with the normal NSC-34 cells. Furthermore, the mRNA and protein expression of Nrf2, heme oxygenase-1 and

NAD(P)H: quinone oxidoreductase 1 was significantly decreased in the NSC-34 cells transfected with the human SOD1-G93A gene. The present study indicated that human SOD1-G93A damaged the Nrf2/ARE signaling pathway in the ALS cell model and reduced the ability of cells to protect against oxidative injury.

摘要

未标记

超氧化物歧化酶1(SOD1)的显性突变是致死性神经退行性疾病肌萎缩侧索硬化症(ALS)的常见病因。核因子红细胞2相关因子2(Nrf2)/抗氧化反应元件(ARE)信号通路是细胞对抗氧化应激的主要防御机制,然而,其在ALS中的作用仍有待充分阐明。因此,本研究旨在探讨人类SOD1-G93A基因是否会在ALS细胞模型中影响Nrf2/ARE信号通路。与正常NSC-34细胞相比,转染了hSOD1-G93A基因的NSC-34细胞中,细胞体变得圆钝,神经突数量减少,神经突更短,氧化应激增加。此外,转染了人类SOD1-G93A基因的NSC-34细胞中,Nrf2、血红素加氧酶-1和NAD(P)H:醌氧化还原酶1的mRNA和蛋白表达显著降低。本研究表明,人类SOD1-G93A在ALS细胞模型中损害了Nrf2/ARE信号通路,并降低了细胞抵御氧化损伤的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验