膝关节纵向MRI数据的病变区域检测

Diseased region detection of longitudinal knee MRI data.

作者信息

Huang Chao, Shan Liang, Charles Cecil, Niethammer Marc, Zhu Hongtu

出版信息

Inf Process Med Imaging. 2013;23:632-43. doi: 10.1007/978-3-642-38868-2_53.

Abstract

Statistical analysis of longitudinal cartilage changes in osteoarthritis (OA) is of great importance and still a challenge in knee MRI data analysis. A major challenge is to establish a reliable correspondence across subjects within the same latent subpopulations. We develop a novel Gaussian hidden Markov model (GHMM) to establish spatial correspondence of cartilage thinning across both time and subjects within the same latent subpopulations and make statistical inference on the detection of diseased regions in each OA patient. A hidden Markov random field (HMRF) is proposed to extract such latent subpopulation structure. The EM algorithm and pseudo-likelihood method are both considered in making statistical inference. The proposed model can effectively detect diseased regions and present a localized analysis of longitudinal cartilage thickness within each latent subpopulation. Simulation studies and diseased region detection on 2D thickness maps extracted from full 3D longitudinal knee MRI Data for Pfizer Longitudinal Dataset are performed, which show that our proposed model outperforms standard voxel-based analysis.

摘要

骨关节炎(OA)中软骨纵向变化的统计分析非常重要,并且在膝关节MRI数据分析中仍然是一个挑战。一个主要挑战是在同一潜在亚群的受试者之间建立可靠的对应关系。我们开发了一种新颖的高斯隐马尔可夫模型(GHMM),以在同一潜在亚群内建立跨时间和受试者的软骨变薄的空间对应关系,并对每个OA患者的病变区域检测进行统计推断。提出了一种隐马尔可夫随机场(HMRF)来提取这种潜在亚群结构。在进行统计推断时考虑了EM算法和伪似然方法。所提出的模型可以有效地检测病变区域,并对每个潜在亚群内的软骨厚度进行局部分析。对从辉瑞纵向数据集的全3D纵向膝关节MRI数据中提取的2D厚度图进行了模拟研究和病变区域检测,结果表明我们提出的模型优于基于标准体素的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索