Tec de Monterrey, Monterrey, NL 64849, México.
IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86. doi: 10.1109/TBME.2012.2186612. Epub 2012 Feb 3.
This paper presents a fully automated method for segmenting articular knee cartilage and bone from in vivo 3-D dual echo steady state images. The magnetic resonance imaging (MRI) datasets were obtained from the Osteoarthritis Initiative (OAI) pilot study and include longitudinal images from controls and subjects with knee osteoarthritis (OA) scanned twice at each visit (baseline, 24 month). Initially, human experts segmented six MRI series. Five of the six resultant sets served as reference atlases for a multiatlas segmentation algorithm. The methodology created precise knee segmentations that were used to extract articular cartilage volume, surface area, and thickness as well as subchondral bone plate curvature. Comparison to manual segmentation showed Dice similarity coefficient (DSC) of 0.88 and 0.84 for the femoral and tibial cartilage. In OA subjects, thickness measurements showed test-retest precision ranging from 0.014 mm (0.6%) at the femur to 0.038 mm (1.6%) at the femoral trochlea. In the same population, the curvature test-retest precision ranged from 0.0005 mm(-1) (3.6%) at the femur to 0.0026 mm(-1) (11.7%) at the medial tibia. Thickness longitudinal changes showed OA Pearson correlation coefficient of 0.94 for the femur. In conclusion, the fully automated segmentation methodology produces reproducible cartilage volume, thickness, and shape measurements valuable for the study of OA progression.
本文提出了一种全自动方法,用于从活体 3-D 双回波稳态图像中分割关节膝关节软骨和骨骼。磁共振成像 (MRI) 数据集来自骨关节炎倡议 (OAI) 试点研究,包括来自对照者和膝关节骨关节炎 (OA) 患者的纵向图像,每个访问 (基线、24 个月) 时扫描两次。最初,人类专家对 6 个 MRI 系列进行了分割。这 6 个结果中的 5 个被用作多图谱分割算法的参考图谱。该方法创建了精确的膝关节分割,用于提取关节软骨体积、表面积和厚度以及软骨下骨板曲率。与手动分割的比较表明,股骨和胫骨软骨的 Dice 相似系数 (DSC) 分别为 0.88 和 0.84。在 OA 患者中,厚度测量的测试-再测试精度范围从股骨的 0.014 毫米 (0.6%)到股骨滑车的 0.038 毫米 (1.6%)。在同一人群中,曲率的测试-再测试精度范围从股骨的 0.0005 毫米/1(3.6%)到内侧胫骨的 0.0026 毫米/1(11.7%)。厚度的纵向变化显示股骨的 OA Pearson 相关系数为 0.94。总之,全自动分割方法可产生重复性好的软骨体积、厚度和形状测量值,有助于研究 OA 的进展。