Suppr超能文献

在流形框架下的测地线形状回归

Geodesic shape regression in the framework of currents.

作者信息

Fishbaugh James, Prastawa Marcel, Gerig Guido, Durrleman Stanley

出版信息

Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.

Abstract

Shape regression is emerging as an important tool for the statistical analysis of time dependent shapes. In this paper, we develop a new generative model which describes shape change over time, by extending simple linear regression to the space of shapes represented as currents in the large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear regression, we estimate a baseline shape (intercept) and initial momenta (slope) which fully parameterize the geodesic shape evolution. This is in contrast to previous shape regression methods which assume the baseline shape is fixed. We further leverage a control point formulation, which provides a discrete and low dimensional parameterization of large diffeomorphic transformations. This flexible system decouples the parameterization of deformations from the specific shape representation, allowing the user to define the dimensionality of the deformation parameters. We present an optimization scheme that estimates the baseline shape, location of the control points, and initial momenta simultaneously via a single gradient descent algorithm. Finally, we demonstrate our proposed method on synthetic data as well as real anatomical shape complexes.

摘要

形状回归正成为用于对随时间变化的形状进行统计分析的重要工具。在本文中,我们通过将简单线性回归扩展到在大变形微分同胚度量映射(LDDMM)框架中表示为流的形状空间,开发了一种描述形状随时间变化的新生成模型。通过与线性回归类比,我们估计一个基线形状(截距)和初始动量(斜率),它们完全参数化测地线形状演化。这与先前假设基线形状固定的形状回归方法形成对比。我们进一步利用控制点公式,它提供了大微分同胚变换的离散且低维参数化。这个灵活的系统将变形的参数化与特定形状表示解耦,允许用户定义变形参数的维度。我们提出一种优化方案,通过单一梯度下降算法同时估计基线形状、控制点位置和初始动量。最后,我们在合成数据以及真实解剖形状复合体上展示了我们提出的方法。

相似文献

1
Geodesic shape regression in the framework of currents.在流形框架下的测地线形状回归
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
2
Principal component based diffeomorphic surface mapping.基于主成分的可变形曲面映射。
IEEE Trans Med Imaging. 2012 Feb;31(2):302-11. doi: 10.1109/TMI.2011.2168567. Epub 2011 Sep 19.
5
Bayesian principal geodesic analysis in diffeomorphic image registration.微分同胚图像配准中的贝叶斯主测地线分析。
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):121-8. doi: 10.1007/978-3-319-10443-0_16.
6
Quantifying anatomical shape variations in neurological disorders.定量分析神经紊乱中的解剖结构变化。
Med Image Anal. 2014 Apr;18(3):616-33. doi: 10.1016/j.media.2014.01.001. Epub 2014 Feb 11.
10
A new closed-form information metric for shape analysis.一种用于形状分析的新的闭式信息度量。
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):249-56. doi: 10.1007/11866565_31.

引用本文的文献

1
Diffeomorphic Surface Registration with Atrophy Constraints.具有萎缩约束的微分同胚曲面配准
SIAM J Imaging Sci. 2016;9(3):975-1003. doi: 10.1137/15m104431x. Epub 2016 Jul 13.
3
Brain structure in sagittal craniosynostosis.矢状缝早闭中的脑结构
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254442. Epub 2017 Mar 13.
4
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
8
Modeling 4D Pathological Changes by Leveraging Normative Models.利用规范模型对4D病理变化进行建模。
Comput Vis Image Underst. 2016 Oct;151:3-13. doi: 10.1016/j.cviu.2016.01.007.

本文引用的文献

3
Analysis of longitudinal shape variability via subject specific growth modeling.通过个体特定生长模型分析纵向形状变异性。
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):731-8. doi: 10.1007/978-3-642-33415-3_90.
4
Geodesic regression for image time-series.图像时间序列的测地线回归
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62. doi: 10.1007/978-3-642-23629-7_80.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验