Suppr超能文献

在流形框架下的测地线形状回归

Geodesic shape regression in the framework of currents.

作者信息

Fishbaugh James, Prastawa Marcel, Gerig Guido, Durrleman Stanley

出版信息

Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.

Abstract

Shape regression is emerging as an important tool for the statistical analysis of time dependent shapes. In this paper, we develop a new generative model which describes shape change over time, by extending simple linear regression to the space of shapes represented as currents in the large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear regression, we estimate a baseline shape (intercept) and initial momenta (slope) which fully parameterize the geodesic shape evolution. This is in contrast to previous shape regression methods which assume the baseline shape is fixed. We further leverage a control point formulation, which provides a discrete and low dimensional parameterization of large diffeomorphic transformations. This flexible system decouples the parameterization of deformations from the specific shape representation, allowing the user to define the dimensionality of the deformation parameters. We present an optimization scheme that estimates the baseline shape, location of the control points, and initial momenta simultaneously via a single gradient descent algorithm. Finally, we demonstrate our proposed method on synthetic data as well as real anatomical shape complexes.

摘要

形状回归正成为用于对随时间变化的形状进行统计分析的重要工具。在本文中,我们通过将简单线性回归扩展到在大变形微分同胚度量映射(LDDMM)框架中表示为流的形状空间,开发了一种描述形状随时间变化的新生成模型。通过与线性回归类比,我们估计一个基线形状(截距)和初始动量(斜率),它们完全参数化测地线形状演化。这与先前假设基线形状固定的形状回归方法形成对比。我们进一步利用控制点公式,它提供了大微分同胚变换的离散且低维参数化。这个灵活的系统将变形的参数化与特定形状表示解耦,允许用户定义变形参数的维度。我们提出一种优化方案,通过单一梯度下降算法同时估计基线形状、控制点位置和初始动量。最后,我们在合成数据以及真实解剖形状复合体上展示了我们提出的方法。

相似文献

1
Geodesic shape regression in the framework of currents.
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
2
Principal component based diffeomorphic surface mapping.
IEEE Trans Med Imaging. 2012 Feb;31(2):302-11. doi: 10.1109/TMI.2011.2168567. Epub 2011 Sep 19.
3
Approximations of the diffeomorphic metric and their applications in shape learning.
Inf Process Med Imaging. 2011;22:257-70. doi: 10.1007/978-3-642-22092-0_22.
4
Spatially-varying metric learning for diffeomorphic image registration: a variational framework.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):227-34. doi: 10.1007/978-3-319-10404-1_29.
5
Bayesian principal geodesic analysis in diffeomorphic image registration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):121-8. doi: 10.1007/978-3-319-10443-0_16.
6
Quantifying anatomical shape variations in neurological disorders.
Med Image Anal. 2014 Apr;18(3):616-33. doi: 10.1016/j.media.2014.01.001. Epub 2014 Feb 11.
8
Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration.
Inf Process Med Imaging. 2015;24:249-59. doi: 10.1007/978-3-319-19992-4_19.
9
A hierarchical geodesic model for diffeomorphic longitudinal shape analysis.
Inf Process Med Imaging. 2013;23:560-71. doi: 10.1007/978-3-642-38868-2_47.
10
A new closed-form information metric for shape analysis.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):249-56. doi: 10.1007/11866565_31.

引用本文的文献

1
Diffeomorphic Surface Registration with Atrophy Constraints.
SIAM J Imaging Sci. 2016;9(3):975-1003. doi: 10.1137/15m104431x. Epub 2016 Jul 13.
2
Longitudinal Prediction of Infant MR Images With Multi-Contrast Perceptual Adversarial Learning.
Front Neurosci. 2021 Sep 9;15:653213. doi: 10.3389/fnins.2021.653213. eCollection 2021.
3
Brain structure in sagittal craniosynostosis.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254442. Epub 2017 Mar 13.
4
Computational neuroanatomy of baby brains: A review.
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
6
Geodesic shape regression with multiple geometries and sparse parameters.
Med Image Anal. 2017 Jul;39:1-17. doi: 10.1016/j.media.2017.03.008. Epub 2017 Apr 5.
7
Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI.
Neuroimage. 2017 May 15;152:411-424. doi: 10.1016/j.neuroimage.2017.03.012. Epub 2017 Mar 9.
8
Modeling 4D Pathological Changes by Leveraging Normative Models.
Comput Vis Image Underst. 2016 Oct;151:3-13. doi: 10.1016/j.cviu.2016.01.007.
9
Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains.
IEEE Trans Med Imaging. 2016 Dec;35(12):2568-2577. doi: 10.1109/TMI.2016.2587628. Epub 2016 Jul 7.

本文引用的文献

1
Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data.
Int J Comput Vis. 2013 May;103(1):22-59. doi: 10.1007/s11263-012-0592-x.
2
Topology preserving atlas construction from shape data without correspondence using sparse parameters.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):223-30. doi: 10.1007/978-3-642-33454-2_28.
3
Analysis of longitudinal shape variability via subject specific growth modeling.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):731-8. doi: 10.1007/978-3-642-33415-3_90.
4
Geodesic regression for image time-series.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62. doi: 10.1007/978-3-642-23629-7_80.
5
Estimation of smooth growth trajectories with controlled acceleration from time series shape data.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):401-8. doi: 10.1007/978-3-642-23629-7_49.
6
A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences.
Neuroimage. 2012 Jan 16;59(2):1275-89. doi: 10.1016/j.neuroimage.2011.07.095. Epub 2011 Aug 22.
7
A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of Fallot.
IEEE Trans Med Imaging. 2011 Sep;30(9):1605-16. doi: 10.1109/TMI.2011.2135375.
8
Schild's ladder for the parallel transport of deformations in time series of images.
Inf Process Med Imaging. 2011;22:463-74. doi: 10.1007/978-3-642-22092-0_38.
9
Particle based shape regression of open surfaces with applications to developmental neuroimaging.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):167-74. doi: 10.1007/978-3-642-04271-3_21.
10
Simulation of brain tumors in MR images for evaluation of segmentation efficacy.
Med Image Anal. 2009 Apr;13(2):297-311. doi: 10.1016/j.media.2008.11.002. Epub 2008 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验