Suppr超能文献

从时间序列形状数据中估计具有受控加速度的平滑生长轨迹。

Estimation of smooth growth trajectories with controlled acceleration from time series shape data.

作者信息

Fishbaugh James, Durrleman Stanley, Gerig Guido

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):401-8. doi: 10.1007/978-3-642-23629-7_49.

Abstract

Longitudinal shape analysis often relies on the estimation of a realistic continuous growth scenario from data sparsely distributed in time. In this paper, we propose a new type of growth model parameterized by acceleration, whereas standard methods typically control the velocity. This mimics the behavior of biological tissue as a mechanical system driven by external forces. The growth trajectories are estimated as smooth flows of deformations, which are twice differentiable. This differs from piecewise geodesic regression, for which the velocity may be discontinuous. We evaluate our approach on a set of anatomical structures of the same subject, scanned 16 times between 4 and 8 years of age. We show our acceleration based method estimates smooth growth, demonstrating improved regularity compared to piecewise geodesic regression. Leave-several-out experiments show that our method is robust to missing observations, as well as being less sensitive to noise, and is therefore more likely to capture the underlying biological growth.

摘要

纵向形状分析通常依赖于从时间上稀疏分布的数据中估计出一个现实的连续生长情况。在本文中,我们提出了一种以加速度为参数的新型生长模型,而标准方法通常控制速度。这模拟了生物组织作为一个由外力驱动的机械系统的行为。生长轨迹被估计为可二次微分的光滑变形流。这与分段测地线回归不同,分段测地线回归的速度可能是不连续的。我们在一名受试者的一组解剖结构上评估了我们的方法,该受试者在4至8岁之间进行了16次扫描。我们表明,基于加速度的方法估计出的生长是平滑的,与分段测地线回归相比,显示出更好的规律性。留一法实验表明,我们的方法对缺失观测值具有鲁棒性,并且对噪声不太敏感,因此更有可能捕捉到潜在的生物生长情况。

相似文献

2
Analysis of longitudinal shape variability via subject specific growth modeling.通过个体特定生长模型分析纵向形状变异性。
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):731-8. doi: 10.1007/978-3-642-33415-3_90.
4
Geodesic regression for image time-series.图像时间序列的测地线回归
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62. doi: 10.1007/978-3-642-23629-7_80.

引用本文的文献

1
Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach.时空心脏统计形状建模:一种数据驱动的方法。
Stat Atlases Comput Models Heart. 2022 Sep;13593:143-156. doi: 10.1007/978-3-031-23443-9_14. Epub 2023 Jan 28.
2
Predictive Statistical Model of Early Cranial Development.早期颅骨发育的预测统计模型。
IEEE Trans Biomed Eng. 2022 Feb;69(2):537-546. doi: 10.1109/TBME.2021.3100745. Epub 2022 Jan 20.
3
ACCELERATION CONTROLLED DIFFEOMORPHISMS FOR NONPARAMETRIC IMAGE REGRESSION.用于非参数图像回归的加速度控制微分同胚
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1488-1491. doi: 10.1109/ISBI.2019.8759583. Epub 2019 Jul 11.
5
SlicerSALT: Shape AnaLysis Toolbox.切片器SALT:形状分析工具箱。
Shape Med Imaging (2018). 2018 Sep;11167:65-72. doi: 10.1007/978-3-030-04747-4_6. Epub 2018 Nov 23.
8
Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy.用于估计解剖结构纵向变化的混合效应形状模型。
Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). 2012 Oct;7570:76-87. doi: 10.1007/978-3-642-33555-6_7.
9
Geodesic shape regression in the framework of currents.在流形框架下的测地线形状回归
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.

本文引用的文献

7
Surface matching via currents.基于电流的表面匹配
Inf Process Med Imaging. 2005;19:381-92. doi: 10.1007/11505730_32.
9
On the metrics and euler-lagrange equations of computational anatomy.论计算解剖学的度量与欧拉 - 拉格朗日方程。
Annu Rev Biomed Eng. 2002;4:375-405. doi: 10.1146/annurev.bioeng.4.092101.125733. Epub 2002 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验