Suppr超能文献

关于信号与噪声相关性分析及其在群体编码中作用的因果关系视角。

A causal perspective on the analysis of signal and noise correlations and their role in population coding.

作者信息

Chicharro Daniel

机构信息

Center for Neuroscience and Cognitive Systems, UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy

出版信息

Neural Comput. 2014 Jun;26(6):999-1054. doi: 10.1162/NECO_a_00588. Epub 2014 Mar 31.

Abstract

The role of correlations between neuronal responses is crucial to understanding the neural code. A framework used to study this role comprises a breakdown of the mutual information between stimuli and responses into terms that aim to account for different coding modalities and the distinction between different notions of independence. Here we complete the list of types of independence and distinguish activity independence (related to total correlations), conditional independence (related to noise correlations), signal independence (related to signal correlations), coding independence (related to information transmission), and information independence (related to redundancy). For each type, we identify the probabilistic criterion that defines it, indicate the information-theoretic measure used as statistic to test for it, and provide a graphical criterion to recognize the causal configurations of stimuli and responses that lead to its existence. Using this causal analysis, we first provide sufficiency conditions relating these types. Second, we differentiate the use of the measures as statistics to test for the existence of independence from their use for quantification. We indicate that signal and noise correlation cannot be quantified separately. Third, we explicitly define alternative system configurations used to construct the measures, in which noise correlations or noise and signal correlations are eliminated. Accordingly, we examine which measures are meaningful only as a comparison across configurations and which ones provide a characterization of the actually observed responses without resorting to other configurations. Fourth, we compare the commonly used nonparametric approach to eliminate noise correlations with a functional (model-based) approach, showing that the former approach does not remove those effects of noise correlations captured by the tuning properties of the individual neurons, and implies nonlocal causal structure manipulations. These results improve the interpretation of the measures on the framework and help in understanding how to apply it to analyze the role of correlations.

摘要

神经元反应之间相关性的作用对于理解神经编码至关重要。用于研究这一作用的框架包括将刺激与反应之间的互信息分解为旨在解释不同编码方式以及不同独立性概念之间差异的各项。在这里,我们完善了独立性类型列表,区分了活动独立性(与总相关性相关)、条件独立性(与噪声相关性相关)、信号独立性(与信号相关性相关)、编码独立性(与信息传输相关)和信息独立性(与冗余相关)。对于每种类型,我们确定定义它的概率标准,指出用作检验它的统计量的信息论度量,并提供一种图形标准来识别导致其存在的刺激与反应的因果配置。利用这种因果分析,我们首先给出这些类型之间的充分条件。其次,我们区分将这些度量用作检验独立性存在的统计量与将它们用于量化的用法。我们指出信号相关性和噪声相关性不能单独量化。第三,我们明确界定用于构建这些度量的替代系统配置,其中噪声相关性或噪声与信号相关性被消除。相应地,我们研究哪些度量仅在跨配置比较时才有意义,哪些度量在不借助其他配置的情况下提供对实际观察到的反应的特征描述。第四,我们将常用的消除噪声相关性的非参数方法与一种功能性(基于模型)方法进行比较,表明前一种方法不会消除由单个神经元的调谐特性所捕获的噪声相关性的那些效应,并且意味着非局部因果结构操作。这些结果改进了对该框架下度量的解释,并有助于理解如何应用它来分析相关性的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验