Suppr超能文献

用于分析脑区之间有效连接性的因果推断算法。

Algorithms of causal inference for the analysis of effective connectivity among brain regions.

作者信息

Chicharro Daniel, Panzeri Stefano

机构信息

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy.

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy ; Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK.

出版信息

Front Neuroinform. 2014 Jul 2;8:64. doi: 10.3389/fninf.2014.00064. eCollection 2014.

Abstract

In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl's causality, algorithms of inductive causation (IC and IC(*)) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.

摘要

近年来,已经开发出了强大的因果推断通用算法。特别是在珀尔因果关系框架下,归纳因果算法(IC和IC(*))提供了一种程序,用于确定即使在存在潜在变量的情况下,网络中节点之间的哪些因果联系可以从经验观察中推断出来,这表明了在不对系统进行主动操纵的情况下能够学到的知识的局限性。这些算法原则上可以成为格兰杰因果关系和动态因果建模(DCM)等既定技术的重要补充,以分析脑区之间的因果影响(有效连接性)。然而,它们在动态过程中的应用尚未得到检验。在这里,我们研究如何将这些算法应用于时变信号,如电生理或神经成像信号。我们提出了一种新算法,该算法将先前算法的基本原理与格兰杰因果关系相结合,以获得适合动态过程的因果关系表示。此外,我们使用图形标准从因果结构预测信号之间的动态统计依赖性。我们展示了如何用一种通用的图形方法来理解神经信号因果推断中的一些问题(例如测量噪声、血液动力学反应和时间聚合)。聚焦于空间聚合的影响,我们表明,当在比神经源相互作用的尺度更粗的尺度上进行因果推断时,结果强烈依赖于信号中聚合的神经源的整合程度,因此更多地表征了区域内属性而非区域间的相互作用。我们最后讨论了对潜在过程的明确考虑如何有助于理解格兰杰因果关系和DCM,以及区分功能连接性和有效连接性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8662/4078745/972419f144d4/fninf-08-00064-g0001.jpg

相似文献

1
Algorithms of causal inference for the analysis of effective connectivity among brain regions.
Front Neuroinform. 2014 Jul 2;8:64. doi: 10.3389/fninf.2014.00064. eCollection 2014.
2
Detectability of Granger causality for subsampled continuous-time neurophysiological processes.
J Neurosci Methods. 2017 Jan 1;275:93-121. doi: 10.1016/j.jneumeth.2016.10.016. Epub 2016 Nov 5.
4
Algorithms for the inference of causality in dynamic processes: Application to cardiovascular and cerebrovascular variability.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1789-92. doi: 10.1109/EMBC.2015.7318726.
5
The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference.
J Neurosci Methods. 2014 Feb 15;223:50-68. doi: 10.1016/j.jneumeth.2013.10.018. Epub 2013 Nov 5.
6
Nonlinear connectivity by Granger causality.
Neuroimage. 2011 Sep 15;58(2):330-8. doi: 10.1016/j.neuroimage.2010.01.099. Epub 2010 Feb 2.
8
Statistical perspective on functional and causal neural connectomics: The Time-Aware PC algorithm.
PLoS Comput Biol. 2022 Nov 14;18(11):e1010653. doi: 10.1371/journal.pcbi.1010653. eCollection 2022 Nov.
9
Nonlinear effective connectivity measure based on adaptive Neuro Fuzzy Inference System and Granger Causality.
Neuroimage. 2018 Nov 1;181:382-394. doi: 10.1016/j.neuroimage.2018.07.024. Epub 2018 Jul 19.
10
Canonical Granger causality between regions of interest.
Neuroimage. 2013 Dec;83:189-99. doi: 10.1016/j.neuroimage.2013.06.056. Epub 2013 Jun 27.

引用本文的文献

1
Project, toolkit, and database of neuroinformatics ecosystem: A summary of previous studies on "Frontiers in Neuroinformatics".
Front Neuroinform. 2022 Sep 26;16:902452. doi: 10.3389/fninf.2022.902452. eCollection 2022.
2
A Complex Systems Perspective on Neuroimaging Studies of Behavior and Its Disorders.
Neuroscientist. 2022 Aug;28(4):382-399. doi: 10.1177/1073858421994784. Epub 2021 Feb 16.
5
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.
Hum Brain Mapp. 2017 Mar;38(3):1541-1573. doi: 10.1002/hbm.23471. Epub 2016 Nov 17.
6
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression.
Front Neuroinform. 2016 Jun 14;10:19. doi: 10.3389/fninf.2016.00019. eCollection 2016.
8
Multineuronal activity patterns identify selective synaptic connections under realistic experimental constraints.
J Neurophysiol. 2015 Sep;114(3):1837-49. doi: 10.1152/jn.00429.2015. Epub 2015 Jul 22.
9
Editorial for the research topic: information-based methods for neuroimaging: analyzing structure, function and dynamics.
Front Neuroinform. 2014 Dec 19;8:86. doi: 10.3389/fninf.2014.00086. eCollection 2014.

本文引用的文献

1
A causal perspective on the analysis of signal and noise correlations and their role in population coding.
Neural Comput. 2014 Jun;26(6):999-1054. doi: 10.1162/NECO_a_00588. Epub 2014 Mar 31.
2
Disruption of transfer entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness.
Front Neuroinform. 2013 Nov 13;7:24. doi: 10.3389/fninf.2013.00024. eCollection 2013.
3
4
The impact of latent confounders in directed network analysis in neuroscience.
Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110612. doi: 10.1098/rsta.2011.0612. Print 2013 Aug 28.
5
Spurious causalities with transfer entropy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042917. doi: 10.1103/PhysRevE.87.042917. Epub 2013 Apr 17.
6
Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality.
Brain Connect. 2013;3(3):294-301. doi: 10.1089/brain.2013.0142. Epub 2013 May 15.
7
Measuring information-transfer delays.
PLoS One. 2013;8(2):e55809. doi: 10.1371/journal.pone.0055809. Epub 2013 Feb 28.
8
Neural variability, or lack thereof.
Front Comput Neurosci. 2013 Feb 25;7:7. doi: 10.3389/fncom.2013.00007. eCollection 2013.
9
Analysing connectivity with Granger causality and dynamic causal modelling.
Curr Opin Neurobiol. 2013 Apr;23(2):172-8. doi: 10.1016/j.conb.2012.11.010. Epub 2012 Dec 21.
10
Framework to study dynamic dependencies in networks of interacting processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041901. doi: 10.1103/PhysRevE.86.041901. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验