Suppr超能文献

比较分析 APP/APLP 敲除的单基因和双基因敲除鼠发现 APP-KO 鼠的树突棘密度降低,而 APPsα 的表达可预防这一现象。

Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression.

机构信息

Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany.

出版信息

Acta Neuropathol Commun. 2014 Mar 31;2:36. doi: 10.1186/2051-5960-2-36.

Abstract

Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.

摘要

突触功能障碍和突触丢失是阿尔茨海默病发病机制的关键特征。此前,我们已经证明 APP 和 APLP2 对于突触可塑性、学习和记忆具有重要功能。在这里,我们使用器官型海马培养物来研究 APP 家族成员及其片段对于海马体主神经元树突复杂性和棘突形成的特定作用。尽管 APLP1-KO 或 APLP2-KO 小鼠的 CA1 神经元显示出正常的神经元形态和棘突密度,但 APP-KO 小鼠的中树突棘突显示出高度降低的树突复杂性。尽管 APLP2-KO 神经元的形态没有改变,但 APP/APLP2-DKO 突变体在近端顶树突中显示出额外的分支缺陷,表明 APP 和 APLP2 具有冗余性和组合功能对于树突结构。值得注意的是,APP-KO 神经元的棘突密度明显降低,蘑菇棘突数量减少。然而,在 APP/APLP2-DKO 小鼠中,没有检测到棘突密度的进一步降低。从机制上讲,我们使用缺乏跨膜 APP 并仅表达分泌型 APPsα 片段的 APPsα-KI 小鼠证明,仅表达 APPsα 就足以防止在 APP-KO 小鼠中观察到的棘突密度缺陷。总的来说,这些研究揭示了 APP 和 APLP2 对于树突结构的组合作用以及分泌型 APPs 对于棘突密度的独特作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/4023627/9af1ada2dce4/2051-5960-2-36-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验