CNRS, FRE3478 UFIP, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, F-44322 Nantes, France ; University of Nantes, FRE3478 UFIP, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, F-44322 Nantes, France ; INRA, UMR614 FARE, 2 esplanade Roland Garros, F-51686 Reims, France ; University of Reims Champagne-Ardenne, UMR614 FARE, 2 esplanade Roland Garros, F-51686 Reims, France.
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France ; University of Toulouse, LAAS, F-31400 Toulouse, France.
Comput Struct Biotechnol J. 2012 Jul 1;1:e201207001. doi: 10.5936/csbj.201207001. eCollection 2012.
Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis.
动力学是酶催化的一个关键特征。不幸的是,当前的实验和计算技术尚未提供对功能大分子运动的全面理解和描述。在这项工作中,我们扩展了一种新的计算技术,该技术结合了分子建模方法和机器人算法,以研究蛋白质环的功能运动。这种新方法已应用于研究所谓的拇指环在嗜热解木聚糖Thermobacillus xylanilyticus (Tx-xyl) 11 木聚糖酶家族中的功能重要性。所得结果提供了关于环在糖基化/去糖基化催化循环中的作用的新见解,并强调了位于拇指环尖端的残基的性质的关键重要性。通过体外定点诱变实验验证了计算机预测突变的效果。总体而言,我们通过确定催化过程中拇指环运动的作用,提出了一种基于底物和产物动力学的 Tx-xyl 催化的综合模型。