Suppr超能文献

通过质子耦合电子转移,光系统II中的析氧与细胞色素c氧化酶中的氧还原之间的相似性。从四个电子氧化还原反应对有氧生命的统一观点。

Similarity between oxygen evolution in photosystem II and oxygen reduction in cytochrome c oxidase via proton coupled electron transfers. A unified view of the oxygenic life from four electron oxidation-reduction reactions.

作者信息

Yamaguchi Kizashi, Miyagawa Koichi, Shoji Mitsuo, Isobe Hiroshi, Kawakami Takashi

机构信息

Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.

SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.

出版信息

Photochem Photobiol Sci. 2024 Dec;23(12):2133-2155. doi: 10.1007/s43630-024-00648-w. Epub 2024 Nov 22.

Abstract

Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T) computations are performed to elucidate electronic and spin states of CaMnO cluster in the key step for oxygen evolution, namely S [S with Mn(IV) = O + Tyr161-O radical] state of PSII and P [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMnO cluster in PSII and the cycle of oxygen reduction catalyzed by the Cu-Fe-Fe-Cu cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO. Interplay between theory and experiments have revealed that three electrons in the metal sites and one electron in tyrosine radical site are characteristic for PT-ET in these biological redox reaction systems, indicating no necessity of harmful Mn(V) = O and Fe(V) = O bonds with strong oxyl-radical character. Implications of the computational results are discussed in relation to design of artificial systems consisted of earth abundant transition metals for water oxidation.

摘要

系统地描述了破缺对称性(BS)的基本概念和理论基础,以及用于强关联电子系统(SCES)的BS后方法,如电子转移(ET)双自由基、具有自旋阻挫的多中心多自由基,以阐明金属酶:光系统II(PSII)和细胞色素c氧化酶(CcO)中高价过渡金属氧键的结构、键合和反应性。进行了BS杂化密度泛函理论(HDFT)和DLPNO耦合簇(CC)SD(T)计算,以阐明氧进化关键步骤中CaMnO簇的电子和自旋态,即PSII的S [S中Mn(IV)=O + Tyr161-O自由基]态以及CcO中氧还原的P [Fe(IV)=O + HO-Cu(II)+ Tyr161-O自由基]步骤。从理论角度研究了PSII中CaMnO簇催化的水氧化循环和CcO中Cu-Fe-Fe-Cu簇催化的氧还原循环,阐明了PSII中四电子氧化和CcO中四电子还原类似的协同和/或逐步质子转移耦合电子转移(PT-ET)过程。理论与实验之间的相互作用表明,金属位点中的三个电子和酪氨酸自由基位点中的一个电子是这些生物氧化还原反应系统中PT-ET的特征,这表明不需要具有强氧自由基特征的有害Mn(V)=O和Fe(V)=O键。结合由储量丰富的过渡金属组成的用于水氧化的人工系统的设计,讨论了计算结果的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验