Suppr超能文献

基于多集典型相关分析的稳态视觉诱发电位脑机接口中的频率识别

Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.

作者信息

Zhang Yu, Zhou Guoxu, Jin Jing, Wang Xingyu, Cichocki Andrzej

机构信息

Key Laboratory for Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai, P. R. China.

出版信息

Int J Neural Syst. 2014 Jun;24(4):1450013. doi: 10.1142/S0129065714500130. Epub 2014 Jan 26.

Abstract

Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.

摘要

典型相关分析(CCA)一直是基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中最常用的频率识别方法之一。尽管其效率较高,但一个潜在的问题是,在CCA方法中使用预先构建的正弦余弦波作为所需的参考信号,由于缺乏真实脑电图(EEG)数据的特征,往往无法获得最佳识别精度。为了解决这个问题,本研究提出了一种基于多集典型相关分析(MsetCCA)的新方法,以优化CCA方法中用于SSVEP频率识别的参考信号。MsetCCA方法学习多个线性变换,这些变换实现联合空间滤波,以最大化典型变量之间的整体相关性,从而从在相同刺激频率下记录的多组EEG数据中提取SSVEP共同特征。优化后的参考信号由共同特征组合而成,并且完全基于训练数据。对10名健康受试者的EEG数据进行的实验研究表明,与CCA方法以及其他两种竞争方法(多路CCA(MwayCCA)和相位约束CCA(PCCA))相比,MsetCCA方法提高了SSVEP频率的识别精度,特别是对于少量通道和短时间窗长度的情况。这种优越性表明,所提出的MsetCCA方法是基于SSVEP的BCI中频率识别的一个新的有前途的候选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验