1 Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China.
2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing, P. R. China.
Int J Neural Syst. 2018 Dec;28(10):1850028. doi: 10.1142/S0129065718500284. Epub 2018 Jun 18.
The past decade has witnessed rapid development in the field of brain-computer interfaces (BCIs). While the performance is no longer the biggest bottleneck in the BCI application, the tedious training process and the poor ease-of-use have become the most significant challenges. In this study, a spatio-temporal equalization dynamic window (STE-DW) recognition algorithm is proposed for steady-state visual evoked potential (SSVEP)-based BCIs. The algorithm can adaptively control the stimulus time while maintaining the recognition accuracy, which significantly improves the information transfer rate (ITR) and enhances the adaptability of the system to different subjects. Specifically, a spatio-temporal equalization algorithm is used to reduce the adverse effects of spatial and temporal correlation of background noise. Based on the theory of multiple hypotheses testing, a stimulus termination criterion is used to adaptively control the dynamic window. The offline analysis which used a benchmark dataset and an offline dataset collected from 16 subjects demonstrated that the STE-DW algorithm is superior to the filter bank canonical correlation analysis (FBCCA), canonical variates with autoregressive spectral analysis (CVARS), canonical correlation analysis (CCA) and CCA reducing variation (CCA-RV) algorithms in terms of accuracy and ITR. The results show that in the benchmark dataset, the STE-DW algorithm achieved an average ITR of 134 bits/min, which exceeds the FBCCA, CVARS, CCA and CCA-RV. In off-line experiments, the STE-DW algorithm also achieved an average ITR of 116 bits/min. In addition, the online experiment also showed that the STE-DW algorithm can effectively expand the number of applicable users of the SSVEP-based BCI system. We suggest that the STE-DW algorithm can be used as a reliable identification algorithm for training-free SSVEP-based BCIs, because of the good balance between ease of use, recognition accuracy, ITR and user applicability.
过去十年见证了脑机接口(BCI)领域的飞速发展。虽然性能不再是 BCI 应用的最大瓶颈,但繁琐的训练过程和较差的易用性已成为最显著的挑战。在这项研究中,我们提出了一种基于稳态视觉诱发电位(SSVEP)的时空均衡动态窗口(STE-DW)识别算法。该算法可以在保持识别精度的同时自适应地控制刺激时间,从而显著提高信息传输率(ITR),增强系统对不同个体的适应性。具体来说,我们使用时空均衡算法来减少背景噪声的空间和时间相关性的不利影响。基于多假设检验理论,我们使用刺激终止准则自适应地控制动态窗口。离线分析使用基准数据集和从 16 名受试者收集的离线数据集进行分析,结果表明,STE-DW 算法在准确性和 ITR 方面优于滤波器组典型相关分析(FBCCA)、典型变量自回归谱分析(CVARS)、典型相关分析(CCA)和CCA 变分(CCA-RV)算法。结果表明,在基准数据集中,STE-DW 算法的平均 ITR 为 134 位/分钟,超过了 FBCCA、CVARS、CCA 和 CCA-RV。在离线实验中,STE-DW 算法的平均 ITR 也达到了 116 位/分钟。此外,在线实验还表明,STE-DW 算法可以有效地扩大基于 SSVEP 的 BCI 系统的适用用户数量。我们建议,由于 STE-DW 算法在易用性、识别精度、ITR 和用户适用性之间取得了良好的平衡,因此可以将其作为一种可靠的无训练 SSVEP 基 BCI 识别算法。