Dean P N, Kolla S, Van Dilla M A
Biomedical Sciences Division, Lawrence Livermore National Laboratory, California 94550.
Cytometry. 1989 Mar;10(2):109-23. doi: 10.1002/cyto.990100202.
Bivariate flow karyotype analysis is performed using data from chromosomes stained with two fluorescent dyes, typically chromomycin A3 and Hoechst-33258, and measured in a flow cytometer or cell sorter (Carrano et al.: Proceedings of the National Academy of Sciences of the United States of America 76:1382-1384, 1979; Gray et al.: Proceedings of the National Academy of Sciences of the United States of America 72:1231-1234, 1975; Langlois et al.: Proceedings of the National Academy of Sciences of the United States of America 79:7876-7880, 1982). In the resulting bivariate histogram, most chromosome types appear as individual peaks. In sorting of chromosomes to purify a specific chromosomal type, its corresponding peak in the bivariate histogram is delineated by a rectangular region which surrounds it. All events (objects) that fall within this region trigger the sorting process. In most cases, peaks for different chromosomal types overlap to some extent, and in addition there is always an underlying background due to chromosome fragments and clumps. Thus the sorted population will not be pure; it may include more than one chromosome type and will include debris. To determine the purity of a sort, i.e., the percentage of the sorted material that is of the actual chromosomal type desired, two methods of mathematical analysis have been developed. In the more general method, the bivariate data within an analysis region that includes the sort region, are fit with a series of bivariate Gaussian functions, one for each peak. In a simplified method, the data within the analysis region are transformed into a univariate distribution of either chromomycin A3 or Hoechst-33258 fluorescence. The peaks in these univariate distributions are fit with univariate Gaussian functions. In both methods the purity is determined mathematically. The results of both methods agree well with independent methods of analysis.
双变量流式核型分析是利用用两种荧光染料染色的染色体数据进行的,这两种染料通常是嗜铬菌素A3和Hoechst - 33258,并在流式细胞仪或细胞分选仪中进行测量(卡拉诺等人:《美国国家科学院院刊》76:1382 - 1384,1979年;格雷等人:《美国国家科学院院刊》72:1231 - 1234,1975年;朗格卢瓦等人:《美国国家科学院院刊》79:7876 - 7880,1982年)。在所得的双变量直方图中,大多数染色体类型呈现为单个峰。在对染色体进行分选以纯化特定染色体类型时,其在双变量直方图中对应的峰由围绕它的矩形区域划定。落入该区域内的所有事件(物体)触发分选过程。在大多数情况下,不同染色体类型的峰在一定程度上会重叠,此外,由于染色体片段和团块,总是存在一个潜在的背景。因此,分选得到的群体不会是纯的;它可能包括不止一种染色体类型,并且会包含碎片。为了确定分选纯度,即分选材料中实际所需染色体类型的百分比,已经开发了两种数学分析方法。在更通用的方法中,包括分选区域的分析区域内的双变量数据,用一系列双变量高斯函数拟合,每个峰对应一个函数。在一种简化方法中,分析区域内的数据被转换为嗜铬菌素A3或Hoechst - 33258荧光的单变量分布。这些单变量分布中的峰用单变量高斯函数拟合。在这两种方法中,纯度都是通过数学方法确定的。两种方法的结果与独立分析方法的结果吻合得很好。