Suppr超能文献

成像弹状病毒出芽途径。

Imaging the alphavirus exit pathway.

机构信息

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

J Virol. 2014 Jun;88(12):6922-33. doi: 10.1128/JVI.00592-14. Epub 2014 Apr 2.

Abstract

UNLABELLED

Alphaviruses are small enveloped RNA viruses with highly organized structures that exclude host cell proteins. They contain an internal nucleocapsid and an external lattice of the viral E2 and E1 transmembrane proteins. Alphaviruses bud from the plasma membrane (PM), but the process and dynamics of alphavirus assembly and budding are poorly understood. Here we generated Sindbis viruses (SINVs) with fluorescent protein labels on the E2 envelope protein and exploited them to characterize virus assembly and budding in living cells. During virus infection, E2 became enriched in localized patches on the PM and in filopodium-like extensions. These E2-labeled patches and extensions contained all of the viral structural proteins. Correlative light and electron microscopy studies established that the patches and extensions colocalized with virus budding structures, while light microscopy showed that they excluded a freely diffusing PM marker protein. Exclusion required the interaction of the E2 protein with the capsid protein, a critical step in virus budding, and was associated with the immobilization of the envelope proteins on the cell surface. Virus infection induced two distinct types of extensions: tubulin-negative extensions that were ∼2 to 4 μm in length and excluded the PM marker, and tubulin-positive extensions that were >10 μm long, contained the PM marker, and could transfer virus particles to noninfected cells. Tubulin-positive extensions were selectively reduced in cells infected with a nonbudding SINV mutant. Together, our data support a model in which alphavirus infection induces reorganization of the PM and cytoskeleton, leading to virus budding from specialized sites.

IMPORTANCE

Alphaviruses are important and widely distributed human pathogens for which vaccines and antiviral therapies are urgently needed. These small highly organized viruses bud from the host cell PM. Virus assembly and budding are critical but little understood steps in the alphavirus life cycle. We developed alphaviruses with fluorescent protein tags on one of the viral membrane (envelope) proteins and used a variety of microscopy techniques to follow the envelope protein and a host cell PM protein during budding. We showed that alphavirus infection induced the formation of patches and extensions on the PM where the envelope proteins accumulate. These sites excluded other PM proteins and correlated with virus budding structures. Exclusion of PM proteins required specific interactions of the viral envelope proteins with the internal capsid protein. Together, our data indicate that alphaviruses extensively reorganize the cell surface and cytoskeleton to promote their assembly and budding.

摘要

未加标签

甲病毒是一类具有高度组织化结构的小 RNA 包膜病毒,不包含宿主细胞蛋白。它们包含一个内部核衣壳和一个由病毒 E2 和 E1 跨膜蛋白构成的外部晶格。甲病毒从质膜(PM)出芽,但对甲病毒组装和出芽的过程和动力学知之甚少。在这里,我们在 E2 包膜蛋白上生成了带有荧光蛋白标签的辛德毕斯病毒(SINVs),并利用它们来描述活细胞中的病毒组装和出芽。在病毒感染过程中,E2 在 PM 上的局灶斑和丝状伪足样延伸处富集。这些带有 E2 标签的斑和延伸包含了所有的病毒结构蛋白。光镜和电子显微镜的相关研究表明,这些斑和延伸与病毒出芽结构共定位,而光镜显示它们排除了一种自由扩散的 PM 标记蛋白。这种排除需要 E2 蛋白与衣壳蛋白的相互作用,这是病毒出芽的关键步骤,并且与包膜蛋白在细胞表面的固定化有关。病毒感染诱导了两种不同类型的延伸:长度约为 2 到 4 微米的微管阴性延伸,排除了 PM 标记物;以及长度大于 10 微米的微管阳性延伸,包含 PM 标记物,并且可以将病毒颗粒转移到非感染细胞。在感染非出芽性辛德毕斯病毒突变体的细胞中,微管阳性延伸选择性减少。总的来说,我们的数据支持一种模型,即甲病毒感染诱导 PM 和细胞骨架的重排,导致病毒从特定位点出芽。

重要性

甲病毒是重要且广泛分布的人类病原体,迫切需要疫苗和抗病毒疗法。这些小而高度组织化的病毒从宿主细胞 PM 出芽。病毒组装和出芽是甲病毒生命周期中关键但知之甚少的步骤。我们开发了带有荧光蛋白标签的甲病毒,标签位于病毒膜(包膜)蛋白之一上,并使用各种显微镜技术在出芽过程中跟踪包膜蛋白和宿主细胞 PM 蛋白。我们表明,甲病毒感染诱导 PM 上形成斑块和延伸,包膜蛋白在这些部位聚集。这些部位排除了其他 PM 蛋白,并与病毒出芽结构相关。PM 蛋白的排除需要病毒包膜蛋白与内部衣壳蛋白的特定相互作用。总的来说,我们的数据表明,甲病毒广泛重组细胞膜和细胞骨架,以促进其组装和出芽。

相似文献

1
Imaging the alphavirus exit pathway.
J Virol. 2014 Jun;88(12):6922-33. doi: 10.1128/JVI.00592-14. Epub 2014 Apr 2.
2
The Alphavirus E2 Membrane-Proximal Domain Impacts Capsid Interaction and Glycoprotein Lattice Formation.
J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01881-18. Print 2019 Feb 15.
3
Imaging of the alphavirus capsid protein during virus replication.
J Virol. 2013 Sep;87(17):9579-89. doi: 10.1128/JVI.01299-13. Epub 2013 Jun 19.
4
Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission.
PLoS Pathog. 2016 Dec 15;12(12):e1006061. doi: 10.1371/journal.ppat.1006061. eCollection 2016 Dec.
5
Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding.
J Virol. 2012 Mar;86(5):2585-99. doi: 10.1128/JVI.05860-11. Epub 2011 Dec 21.
8
The Alphavirus Exit Pathway: What We Know and What We Wish We Knew.
Viruses. 2018 Feb 22;10(2):89. doi: 10.3390/v10020089.
9
Mutations at the Alphavirus E1'-E2 Interdimer Interface Have Host-Specific Phenotypes.
J Virol. 2022 Mar 9;96(5):e0214921. doi: 10.1128/jvi.02149-21. Epub 2022 Jan 12.

引用本文的文献

1
Insights into the Landscape of Alphavirus Receptor and Antibody Interactions.
Viruses. 2025 Jul 21;17(7):1019. doi: 10.3390/v17071019.
2
Virus stealth technology: Tools to study virus cell-to-cell transmission.
PLoS Pathog. 2024 Oct 9;20(10):e1012590. doi: 10.1371/journal.ppat.1012590. eCollection 2024 Oct.
3
The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication.
J Virol. 2024 Oct 22;98(10):e0061224. doi: 10.1128/jvi.00612-24. Epub 2024 Sep 19.
4
Pathogenicity and virulence of chikungunya virus.
Virulence. 2024 Dec;15(1):2396484. doi: 10.1080/21505594.2024.2396484. Epub 2024 Sep 1.
5
Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding.
PLoS Pathog. 2022 Oct 3;18(10):e1010892. doi: 10.1371/journal.ppat.1010892. eCollection 2022 Oct.
6
Mayaro Virus: The State-of-the-Art for Antiviral Drug Development.
Viruses. 2022 Aug 16;14(8):1787. doi: 10.3390/v14081787.
7
Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding.
Pathogens. 2021 Aug 4;10(8):984. doi: 10.3390/pathogens10080984.
8
Viral cell-to-cell spread: Conventional and non-conventional ways.
Adv Virus Res. 2020;108:85-125. doi: 10.1016/bs.aivir.2020.09.002. Epub 2020 Sep 29.
9
Revisiting an old friend: new findings in alphavirus structure and assembly.
Curr Opin Virol. 2020 Dec;45:25-33. doi: 10.1016/j.coviro.2020.06.005. Epub 2020 Jul 16.
10
Capsid protein is central to the birth of flavivirus particles.
PLoS Pathog. 2020 May 28;16(5):e1008542. doi: 10.1371/journal.ppat.1008542. eCollection 2020 May.

本文引用的文献

2
Directed evolution of a virus exclusively utilizing human epidermal growth factor receptor as the entry receptor.
J Virol. 2013 Oct;87(20):11231-43. doi: 10.1128/JVI.01054-13. Epub 2013 Aug 7.
3
Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties.
Virus Res. 2013 Nov 6;177(2):138-46. doi: 10.1016/j.virusres.2013.07.014. Epub 2013 Jul 31.
4
5
Imaging of the alphavirus capsid protein during virus replication.
J Virol. 2013 Sep;87(17):9579-89. doi: 10.1128/JVI.01299-13. Epub 2013 Jun 19.
6
Assembling a primary cilium.
Curr Opin Cell Biol. 2013 Aug;25(4):506-11. doi: 10.1016/j.ceb.2013.04.011. Epub 2013 Jun 7.
7
How to get out: ssRNA enveloped viruses and membrane fission.
Curr Opin Virol. 2013 Apr;3(2):159-67. doi: 10.1016/j.coviro.2013.03.011. Epub 2013 Apr 11.
8
Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding.
J Virol. 2012 Mar;86(5):2585-99. doi: 10.1128/JVI.05860-11. Epub 2011 Dec 21.
9
The role of cellular factors in promoting HIV budding.
J Mol Biol. 2011 Jul 22;410(4):525-33. doi: 10.1016/j.jmb.2011.04.055.
10
Rescue of infectious particles from preassembled alphavirus nucleocapsid cores.
J Virol. 2011 Jun;85(12):5773-81. doi: 10.1128/JVI.00039-11. Epub 2011 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验