Suppr超能文献

一种微声学分析,包括粘度和热导率,以模拟保护帽对MEMS麦克风声学响应的影响。

A microacoustic analysis including viscosity and thermal conductivity to model the effect of the protective cap on the acoustic response of a MEMS microphone.

作者信息

Homentcovschi D, Miles R N, Loeppert P V, Zuckerwar A J

机构信息

Department of Mechanical Engineering, State University of New York, Binghamton, NY 13902-6000.

Knowles Electronics LLC, 1151 Maplewood Drive, Itasca, IL 60143-2071.

出版信息

Microsyst Technol. 2014 Feb;20(2):265-272. doi: 10.1007/s00542-013-1800-5.

Abstract

An analysis is presented of the effect of the protective cover on the acoustic response of a miniature silicon microphone. The microphone diaphragm is contained within a small rectangular enclosure and the sound enters through a small hole in the enclosure's top surface. A numerical model is presented to predict the variation in the sound field with position within the enclosure. An objective of this study is to determine up to which frequency the pressure distribution remains sufficiently uniform so that a pressure calibration can be made in free space. The secondary motivation for this effort is to facilitate microphone design by providing a means of predicting how the placement of the microphone diaphragm in the package affects the sensitivity and frequency response. While the size of the package is typically small relative to the wavelength of the sounds of interest, because the dimensions of the package are on the order of the thickness of the viscous boundary layer, viscosity can significantly affect the distribution of sound pressure around the diaphragm. In addition to the need to consider viscous effects, it is shown here that one must also carefully account for thermal conductivity to properly represent energy dissipation at the system's primary acoustic resonance frequency. The sound field is calculated using a solution of the linearized system consisting of continuity equation, Navier-Stokes equations, the state equation and the energy equation using a finite element approach. The predicted spatial variation of both the amplitude and phase of the sound pressure is shown over the range of audible frequencies. Excellent agreement is shown between the predicted and measured effects of the package on the microphone's sensitivity.

摘要

本文对保护罩对微型硅麦克风声学响应的影响进行了分析。麦克风振膜置于一个小的矩形外壳内,声音通过外壳顶面上的一个小孔进入。提出了一个数值模型来预测外壳内声场随位置的变化。本研究的一个目标是确定在何种频率范围内压力分布仍保持足够均匀,以便能够在自由空间中进行压力校准。这项工作的第二个动机是通过提供一种预测麦克风振膜在封装中的位置如何影响灵敏度和频率响应的方法,来促进麦克风的设计。虽然相对于感兴趣声音的波长,封装尺寸通常较小,但由于封装尺寸与粘性边界层厚度相当,粘性会显著影响振膜周围的声压分布。除了需要考虑粘性效应外,本文还表明,为了在系统的主要声学共振频率下正确表示能量耗散,还必须仔细考虑热导率。使用有限元方法,通过求解由连续性方程、纳维 - 斯托克斯方程、状态方程和能量方程组成的线性化系统来计算声场。给出了在可听频率范围内声压幅值和相位的预测空间变化。结果表明,预测的封装对麦克风灵敏度的影响与测量结果非常吻合。

相似文献

4
Acoustic transmission line based modelling of microscaled channels and enclosures.
J Acoust Soc Am. 2019 Feb;145(2):968. doi: 10.1121/1.5090502.
6
Design and Optimization of a BAW Microphone Sensor.BAW 麦克风传感器的设计与优化
Micromachines (Basel). 2022 Jun 2;13(6):893. doi: 10.3390/mi13060893.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验