Suppr超能文献

α波控制的动态变化:脑电图与事件相关光信号联合揭示额叶调制器对后部α波振荡的预备性抑制

Dynamics of alpha control: preparatory suppression of posterior alpha oscillations by frontal modulators revealed with combined EEG and event-related optical signal.

作者信息

Mathewson Kyle E, Beck Diane M, Ro Tony, Maclin Edward L, Low Kathy A, Fabiani Monica, Gratton Gabriele

机构信息

University of Illinois at Urbana-Champaign.

出版信息

J Cogn Neurosci. 2014 Oct;26(10):2400-15. doi: 10.1162/jocn_a_00637. Epub 2014 Apr 4.

Abstract

We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously, we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently recorded EEG, while participants performed a visual target detection task. The pretarget alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across participants. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks before posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli.

摘要

我们研究了促进对外部刺激产生意识体验的大脑过程的动态变化。此前,我们提出,随持续注意力和定向注意力波动的α(8 - 12赫兹)振荡代表对正在进行的感觉脑活动的脉冲式抑制。在此,我们测试了一项预测,即视觉皮层中的抑制性α振荡受来自额顶叶注意力网络的自上而下信号的调节。在参与者执行视觉目标检测任务时,我们使用事件相关光信号(EROS,一种提供高时空分辨率的神经元活动测量方法)测量了来自额叶、顶叶和枕叶浅表皮层的相位相干α振荡的调制情况,并同时记录了脑电图。用脑电图和EROS测量的后部区域的目标前α振荡,对于随后未被检测到的目标更大,这支持了α的抑制作用。使用EROS,我们将在头皮处测量的这些与意识相关的α振荡的脑关联定位到楔叶和楔前叶。至关重要的是,跨参与者的EROSα抑制与后部脑电图α功率相关。根据脑电图α功率四分位数对EROS数据进行分类以研究α调制器,结果显示后部α的抑制之前,背侧注意力网络区域的活动增加,扣带 - 脑岛网络区域的活动减少。互相关揭示了这些准备网络中后部α调制之前活动的时间动态。脑电图和EROS的新颖结合实现了α振荡的源、关联及其时间关系的定位,支持了我们的提议,即来自注意力网络的自上而下控制调节后部α以及视觉刺激的意识。

相似文献

2
Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching.
Sci Rep. 2019 Mar 22;9(1):5030. doi: 10.1038/s41598-019-41636-w.
6
Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
J Neurosci. 2018 May 2;38(18):4348-4356. doi: 10.1523/JNEUROSCI.2639-17.2018. Epub 2018 Apr 10.
7
Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9457-9462. doi: 10.1073/pnas.1705965114. Epub 2017 Aug 14.
8
Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli.
Neuroimage. 2015 Jun;113:153-63. doi: 10.1016/j.neuroimage.2015.03.028. Epub 2015 Mar 20.
9
Frontoparietal Networks Mediate the Behavioral Impact of Alpha Inhibition in Visual Cortex.
Cereb Cortex. 2019 Jul 22;29(8):3505-3513. doi: 10.1093/cercor/bhy220.
10
Blocking of irrelevant memories by posterior alpha activity boosts memory encoding.
Hum Brain Mapp. 2014 Aug;35(8):3972-87. doi: 10.1002/hbm.22452. Epub 2014 Feb 12.

引用本文的文献

1
Brief mindfulness coaching enhances selective attention in medical scientists: A pilot study.
PLoS One. 2025 Sep 12;20(9):e0330290. doi: 10.1371/journal.pone.0330290. eCollection 2025.
2
Shared and Diverging Neural Dynamics Underlying False and Veridical Perception.
J Neurosci. 2025 Jul 23;45(30):e1479242025. doi: 10.1523/JNEUROSCI.1479-24.2025.
3
Climate trauma from wildfire exposure impacts cognitive decision-making.
Sci Rep. 2025 Apr 16;15(1):11992. doi: 10.1038/s41598-025-94672-0.
4
Bypassing input to V1 in visual awareness: A TMS-EROS investigation.
Neuropsychologia. 2024 Jun 6;198:108864. doi: 10.1016/j.neuropsychologia.2024.108864. Epub 2024 Mar 22.
5
Neurophysiological hallmarks of Huntington's disease progression: an EEG and fMRI connectivity study.
Front Aging Neurosci. 2023 Dec 15;15:1270226. doi: 10.3389/fnagi.2023.1270226. eCollection 2023.
6
Frontal-occipital phase synchronization predicts occipital alpha power in perceptual decision-making.
Cogn Neurodyn. 2023 Aug;17(4):815-827. doi: 10.1007/s11571-022-09862-7. Epub 2022 Aug 24.
7
Classification of brain states that predicts future performance in visual tasks based on co-integration analysis of EEG data.
R Soc Open Sci. 2022 Nov 30;9(11):220621. doi: 10.1098/rsos.220621. eCollection 2022 Nov.
10
Proof-of-concept evidence for trimodal simultaneous investigation of human brain function.
Hum Brain Mapp. 2021 Sep;42(13):4102-4121. doi: 10.1002/hbm.25541. Epub 2021 Jun 23.

本文引用的文献

1
Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy.
Neuroimage. 2014 Feb 15;87:190-8. doi: 10.1016/j.neuroimage.2013.11.003. Epub 2013 Nov 9.
2
Cortical dynamics of semantic processing during sentence comprehension: evidence from event-related optical signals.
PLoS One. 2013 Aug 1;8(8):e70671. doi: 10.1371/journal.pone.0070671. Print 2013.
3
Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):592-607. doi: 10.1016/j.neuroimage.2013.04.113. Epub 2013 May 9.
4
Coupling between visual alpha oscillations and default mode activity.
Neuroimage. 2013 Mar;68:112-8. doi: 10.1016/j.neuroimage.2012.11.058. Epub 2012 Dec 8.
5
Fast optical signal in visual cortex: Improving detection by General Linear Convolution Model.
Neuroimage. 2013 Feb 1;66:194-202. doi: 10.1016/j.neuroimage.2012.10.047. Epub 2012 Oct 27.
6
α-band phase synchrony is related to activity in the fronto-parietal adaptive control network.
J Neurosci. 2012 Oct 10;32(41):14305-10. doi: 10.1523/JNEUROSCI.1358-12.2012.
8
Functional roles of alpha-band phase synchronization in local and large-scale cortical networks.
Front Psychol. 2011 Sep 5;2:204. doi: 10.3389/fpsyg.2011.00204. eCollection 2011.
9
Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing.
Front Psychol. 2011 May 19;2:99. doi: 10.3389/fpsyg.2011.00099. eCollection 2011.
10
Rhythmic TMS causes local entrainment of natural oscillatory signatures.
Curr Biol. 2011 Jul 26;21(14):1176-85. doi: 10.1016/j.cub.2011.05.049. Epub 2011 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验