Pavlovic Miroslav
Faculty of Mathematics, University of Belgrade, Studentski Trg 16, P.O. Box 550, 11001 Beograd, Serbia.
ScientificWorldJournal. 2014 Feb 20;2014:590656. doi: 10.1155/2014/590656. eCollection 2014.
We consider the action of the operator ℒg(z) = (1 - z)(-1)∫ z (1)f(ζ)dζ on a class of "mixed norm" spaces of analytic functions on the unit disk, X = H α,ν (p,q) , defined by the requirement g ∈ X ⇔ r ↦ (1 - r) (α) M p (r, g ((ν))) ∈ L (q) ([0,1], dr/(1 - r)), where 1 ≤ p ≤ ∞, 0 < q ≤ ∞, α > 0, and ν is a nonnegative integer. This class contains Besov spaces, weighted Bergman spaces, Dirichlet type spaces, Hardy-Sobolev spaces, and so forth. The expression ℒg need not be defined for g analytic in the unit disk, even for g ∈ X. A sufficient, but not necessary, condition is that Σ(n=0)|(∞)|ĝ(n)/(n + 1) < ∞. We identify the indices p, q, α, and ν for which 1°ℒ is well defined on X, 2 °ℒ acts from X to X, 3° the implication g ∈ X [Symbol: see text] Σ(n = 0)(∞) |/ĝ(n)|(n+1) < ∞ holds. Assertion 2° extends some known results, due to Siskakis and others, and contains some new ones. As an application of 3° we have a generalization of Bernstein's theorem on absolute convergence of power series that belong to a Hölder class.
我们考虑算子ℒg(z) = (1 - z)(-1)∫ z (1)f(ζ)dζ在单位圆盘上一类解析函数的“混合范数”空间X = H α,ν (p,q)上的作用,该空间的定义要求为g ∈ X ⇔ r ↦ (1 - r) (α) M p (r, g ((ν))) ∈ L (q) ([0,1], dr/(1 - r)),其中1 ≤ p ≤ ∞,0 < q ≤ ∞,α > 0,且ν为非负整数。这类空间包含贝索夫空间、加权伯格曼空间、狄利克雷型空间、哈代 - 索伯列夫空间等等。即使对于g ∈ X,表达式ℒg在单位圆盘内解析的g上也不一定有定义。一个充分但非必要条件是Σ(n=0)|(∞)|ĝ(n)/(n + 1) < ∞。我们确定了指标p、q、α和ν,使得:1° ℒ在X上有良好定义;2° ℒ从X作用到X;3° 蕴含关系g ∈ X [符号:见原文] Σ(n = 0)(∞) |/ĝ(n)|(n+1) < ∞成立。断言2°扩展了一些由西斯卡基斯等人得到的已知结果,并包含一些新结果。作为3°的一个应用,我们对属于赫尔德类的幂级数绝对收敛的伯恩斯坦定理进行了推广。