Klonecki W
STATISTICAL LABORATORY, UNIVERSITY OF CALIFORNIA, BERKELEY.
Proc Natl Acad Sci U S A. 1970 Apr;65(4):831-6. doi: 10.1073/pnas.65.4.831.
Let g(u|c,y) = exp {ySigmac(k)(u(k) - 1)} with y > 0, Sigma(k=0) (infinity)c(k) = 1,|u| < 1, and c standing for {c(k)}, be a probability generating function of a nonnegative integer-valued random variable. Let S be a distribution function on (0, infinity) non-degenerate at zero. The functions g and S determine another probability generating function, G(u|Sc) = integral(0) (infinity)gdS(y). One of the results obtained asserts that, if the sequence c is finite and the characteristic function of S is entire, then G determines uniquely both S and c. The assertion does not hold if these conditions are not satisfied. Another group of results refers to properties of characteristic functions. Let P(z) be a polynomial of degree m and f(z|y) = exp- {yP(z)}. The theorem of Marcinkiewicz asserts that with m > 2 the function f cannot be a characteristic function. It is shown that, if the characteristic function of S is entire, then F(z) = integral(0) (infinity)f(z|y)dS(y) can be characteristic function only if m </= 2. Again the assertion need not be true if the characteristic function of S is not entire.
设(g(u|c,y)=\exp{y\sum_{k}c(k)(u(k)-1)}),其中(y\gt0),(\sum_{k = 0}^{\infty}c(k)=1),(|u|\lt1),且(c)表示({c(k)}),它是一个非负整数值随机变量的概率生成函数。设(S)是((0,+\infty))上在零处非退化的分布函数。函数(g)和(S)确定另一个概率生成函数(G(u|Sc)=\int_{0}^{\infty}gdS(y))。得到的一个结果断言,如果序列(c)是有限的且(S)的特征函数是整函数,那么(G)能唯一确定(S)和(c)。如果不满足这些条件,该断言不成立。另一组结果涉及特征函数的性质。设(P(z))是一个(m)次多项式且(f(z|y)=\exp{-yP(z)})。马尔钦凯维奇定理断言,当(m\gt2)时,函数(f)不可能是特征函数。结果表明,如果(S)的特征函数是整函数,那么仅当(m\leq2)时,(F(z)=\int_{0}^{\infty}f(z|y)dS(y))才可能是特征函数。同样,如果(S)的特征函数不是整函数,该断言不一定成立。