Tarique Mohammed, Tabassum Farha, Ahmad Moaz, Tuteja Renu
International Centre for Genetic Engineering and Biotechnology, P, O, Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
BMC Biochem. 2014 Apr 3;15:9. doi: 10.1186/1471-2091-15-9.
Human malaria parasite infection and its control is a global challenge which is responsible for ~0.65 million deaths every year globally. The emergence of drug resistant malaria parasite is another challenge to fight with malaria. Enormous efforts are being made to identify suitable drug targets in order to develop newer classes of drug. Helicases play crucial roles in DNA metabolism and have been proposed as therapeutic targets for cancer therapy as well as viral and parasitic infections. Genome wide analysis revealed that Plasmodium falciparum possesses UvrD helicase, which is absent in the human host.
Recently the biochemical characterization of P. falciparum UvrD helicase revealed that N-terminal UvrD (PfUDN) hydrolyses ATP, translocates in 3' to 5' direction and interacts with MLH to modulate each other's activity. In this follow up study, further characterization of P. falciparum UvrD helicase is presented. Here, we screened the effect of various DNA interacting compounds on the ATPase and helicase activity of PfUDN. This study resulted into the identification of daunorubicin (daunomycin), netropsin, nogalamycin, and ethidium bromide as the potential inhibitor molecules for the biochemical activities of PfUDN with IC50 values ranging from ~3.0 to ~5.0 μM. Interestingly etoposide did not inhibit the ATPase activity but considerable inhibition of unwinding activity was observed at 20 μM. Further study for analyzing the importance of PfUvrD enzyme in parasite growth revealed that PfUvrD is crucial/important for its growth ex-vivo.
As PfUvrD is absent in human hence on the basis of this study we propose PfUvrD as suitable drug target to control malaria. Some of the PfUvrD inhibitors identified in the present study can be utilized to further design novel and specific inhibitor molecules.
人类疟原虫感染及其控制是一项全球性挑战,每年在全球导致约65万人死亡。耐药疟原虫的出现是抗击疟疾的另一项挑战。人们正在做出巨大努力来确定合适的药物靶点,以开发新型药物。解旋酶在DNA代谢中起关键作用,已被提议作为癌症治疗以及病毒和寄生虫感染的治疗靶点。全基因组分析表明,恶性疟原虫拥有UvrD解旋酶,而人类宿主中不存在该酶。
最近对恶性疟原虫UvrD解旋酶的生化特性进行了表征,结果显示N端UvrD(PfUDN)水解ATP,沿3'至5'方向移位,并与MLH相互作用以调节彼此的活性。在这项后续研究中,对恶性疟原虫UvrD解旋酶进行了进一步表征。在此,我们筛选了各种DNA相互作用化合物对PfUDN的ATP酶和解旋酶活性的影响。这项研究鉴定出柔红霉素(道诺霉素)、纺锤菌素、诺加霉素和溴化乙锭是PfUDN生化活性的潜在抑制剂分子,其IC50值范围约为3.0至5.0μM。有趣的是,依托泊苷不抑制ATP酶活性,但在20μM时观察到对解链活性有相当大的抑制作用。进一步分析PfUvrD酶在寄生虫生长中的重要性的研究表明,PfUvrD对其体外生长至关重要。
由于人类中不存在PfUvrD,因此基于本研究,我们提议将PfUvrD作为控制疟疾的合适药物靶点。本研究中鉴定出的一些PfUvrD抑制剂可用于进一步设计新型特异性抑制剂分子。