Yuan Kai, Chen Lie, Tan Licheng, Chen Yiwang
Institute of Polymers/Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (P.R. China).
Chemistry. 2014 May 12;20(20):6010-8. doi: 10.1002/chem.201400119. Epub 2014 Apr 7.
Two-dimensional graphene-CdS (G-CdS) semiconductor hybrid nanosheets were synthesized in situ by graphene oxide (GO) quantum wells and a metal-xanthate precursor through a one-step growth process. Incorporation of G-CdS nanosheets into a photoactive film consisting of poly[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[2-(2-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl] (PBDTTT-C-T) and [6,6]-phenyl C70 butyric acid methyl ester (PC70 BM) effectively decreases the exciton lifetime to accelerate exciton dissociation. More importantly, the decreasing energy levels of PBDTTT-C-T, PC70 BM, and G-CdS produces versatile heterojunction interfaces of PBDTTT-C-T:PC70 BM, PBDTTT-C-T:G-CdS, and PBDTTT-C-T:PC70 BM:G-CdS; this offers multi-charge-transfer channels for more efficient charge separation and transfer. The charge transfer in the blend film also depends on the G-CdS nanosheet loadings. In addition, G-CdS nanosheets improve light utilization and charge mobility in the photoactive layer. As a result, by incorporation of G-CdS nanosheets into the active layer, the power-conversion efficiency of inverted solar cells based on PBDTTT-C-T and PC71 BM is improved from 6.0 % for a reference device without G-CdS nanosheets to 7.5 % for the device with 1.5wt % G-CdS nanosheets, due to the dramatically enhanced short-circuit current. Combined with the advantageous mechanical properties of the PBDTTT-C-T:PC70 BM:G-CdS active layer, the novel CdS-cluster-decorated graphene hybrid nanomaterials provide a promising approach to improve the device performance.
通过氧化石墨烯(GO)量子阱和金属黄原酸盐前驱体,采用一步生长法原位合成了二维石墨烯 - 硫化镉(G - CdS)半导体混合纳米片。将G - CdS纳米片掺入由聚[4,8 - 双 - (2 - 乙基己基噻吩 - 5 - 基) - 苯并[1,2 - b:4,5 - b]二噻吩 - 2,6 - 二基] - 交替 - [2 - (2 - 乙基己酰基) - 噻吩并[3,4 - b]噻吩 - 4,6 - 二基](PBDTTT - C - T)和[6,6] - 苯基C70丁酸甲酯(PC70 BM)组成的光活性薄膜中,可有效降低激子寿命以加速激子解离。更重要的是,PBDTTT - C - T、PC70 BM和G - CdS的能级降低产生了PBDTTT - C - T:PC70 BM、PBDTTT - C - T:G - CdS和PBDTTT - C - T:PC70 BM:G - CdS的多功能异质结界面;这提供了多个电荷转移通道,实现更高效的电荷分离和转移。共混薄膜中的电荷转移还取决于G - CdS纳米片的负载量。此外,G - CdS纳米片提高了光活性层中的光利用率和电荷迁移率。结果,通过将G - CdS纳米片掺入活性层,基于PBDTTT - C - T和PC71 BM的倒置太阳能电池的功率转换效率从不含G - CdS纳米片的参考器件的6.0%提高到含1.5wt%G - CdS纳米片的器件的7.5%,这归因于短路电流的显著增强。结合PBDTTT - C - T:PC70 BM:G - CdS活性层的有利机械性能,这种新型的硫化镉簇修饰的石墨烯混合纳米材料为提高器件性能提供了一种有前景的方法。