Fang Shan, Shen Laifa, Xu Guiyin, Nie Ping, Wang Jie, Dou Hui, Zhang Xiaogang
College of Materials Science and Engineering, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics , Nanjing, 210016, P.R. China.
ACS Appl Mater Interfaces. 2014 May 14;6(9):6497-503. doi: 10.1021/am500066j. Epub 2014 Apr 18.
A unique core-shell structure of silicon@titania (Si@TiO2) composite with silicon nanoparticles encapsulated in TiO2 hollow spheres is synthesized by a simple hydrolysis method combined with magnesiothermic reduction method. It is found that the TiO2 shell is effective for improving the electrical conductivity and structural stability. More importantly, the well-designed nanostructure with enough empty space would accommodate the volume change of silicon during the cycling. Reversible capacities of 1911.1 and 795 mAh g(-1) can be obtained at 0.05 C and a high current rate of 1 C, respectively. After 100 cycles at 0.1 C, the composite electrode still maintains a high capacity of 804 mAh g(-1). This excellent cycling stability and high-rate capability can be ascribed to the unique core-shell nanostructure and the synergistic effect between Si and TiO2.
通过简单的水解法与镁热还原法相结合,合成了一种独特的核壳结构的硅@二氧化钛(Si@TiO₂)复合材料,其中硅纳米颗粒被封装在TiO₂空心球中。研究发现,TiO₂壳层对于提高导电性和结构稳定性是有效的。更重要的是,精心设计的具有足够空间的纳米结构能够适应硅在循环过程中的体积变化。在0.05 C和1 C的高电流速率下,分别可获得1911.1和795 mAh g⁻¹的可逆容量。在0.1 C下循环100次后,复合电极仍保持804 mAh g⁻¹的高容量。这种优异的循环稳定性和高倍率性能可归因于独特的核壳纳米结构以及Si和TiO₂之间的协同效应。