Suppr超能文献

制备具有增强锂存储性能的SiO纳米线阵列作为阳极材料。

Preparation of SiO nanowire arrays as anode material with enhanced lithium storage performance.

作者信息

Li Wen, Wang Fan, Ma Mengnan, Zhou Junshuang, Liu Yuwen, Chen Yan

机构信息

Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao Hebei 066004 China

出版信息

RSC Adv. 2018 Oct 1;8(59):33652-33658. doi: 10.1039/c8ra06381h. eCollection 2018 Sep 28.

Abstract

SiO nanowire arrays have been prepared by a template-assisted sol gel method and used as a negative electrode material for lithium ion batteries. Amorphous SiO was confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The results of scanning electron microscopy and transmission electron microscopy confirmed that the SiO nanowire had a diameter of about 100 nm and a length of about 30 μm. Cyclic voltammetry and constant current charge and discharge tests showed the prepared SiO nanowire arrays were electrochemically active at a potential range of 0.05-3.0 V. At a current density of 200 mA g, the first discharge specific capacity was as high as 2252.6 mA h g with a coulombic efficiency of 60.7%. Even after about 400 cycles, it still maintained 97.5% of the initial specific capacity. Moreover, a high specific capacity of 315 mA h g was exhibited when the current density was increased to 2500 mA g. SiO nanowire array electrodes with high reversible capacity and good cycle performance provide potential anode materials for future lithium-ion batteries.

摘要

通过模板辅助溶胶 - 凝胶法制备了二氧化硅纳米线阵列,并将其用作锂离子电池的负极材料。通过X射线衍射和傅里叶变换红外光谱证实了非晶态二氧化硅的存在。扫描电子显微镜和透射电子显微镜的结果证实,二氧化硅纳米线的直径约为100纳米,长度约为30微米。循环伏安法和恒流充放电测试表明,制备的二氧化硅纳米线阵列在0.05 - 3.0 V的电位范围内具有电化学活性。在200 mA g的电流密度下,首次放电比容量高达2252.6 mA h g,库仑效率为60.7%。即使经过约400次循环,它仍保持初始比容量的97.5%。此外,当电流密度增加到2500 mA g时,比容量高达315 mA h g。具有高可逆容量和良好循环性能的二氧化硅纳米线阵列电极可为未来的锂离子电池提供潜在的负极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e7/9086758/5e86688c02ec/c8ra06381h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验