J Clin Invest. 2014 May;124(5):2050-8. doi: 10.1172/JCI71702. Epub 2014 Apr 8.
Intracellular calcium ([Ca²⁺]i) signaling mediates physiological and pathological processes in multiple organs, including the renal podocyte; however, in vivo podocyte [Ca²⁺]i dynamics are not fully understood. Here we developed an imaging approach that uses multiphoton microscopy (MPM) to directly visualize podocyte [Ca²⁺]i dynamics within the intact kidneys of live mice expressing a fluorescent calcium indicator only in these cells. [Ca²⁺]i was at a low steady-state level in control podocytes, while Ang II infusion caused a minor elevation. Experimental focal podocyte injury triggered a robust and sustained elevation of podocyte [Ca²⁺]i around the injury site and promoted cell-to-cell propagating podocyte [Ca²⁺]i waves along capillary loops. [Ca²⁺]i wave propagation was ameliorated by inhibitors of purinergic [Ca²⁺]i signaling as well as in animals lacking the P2Y2 purinergic receptor. Increased podocyte [Ca²⁺]i resulted in contraction of the glomerular tuft and increased capillary albumin permeability. In preclinical models of renal fibrosis and glomerulosclerosis, high podocyte [Ca²⁺]i correlated with increased cell motility. Our findings provide a visual demonstration of the in vivo importance of podocyte [Ca²⁺]i in glomerular pathology and suggest that purinergic [Ca²⁺]i signaling is a robust and key pathogenic mechanism in podocyte injury. This in vivo imaging approach will allow future detailed investigation of the molecular and cellular mechanisms of glomerular disease in the intact living kidney.
细胞内钙([Ca²⁺]i)信号转导介导包括肾脏足细胞在内的多个器官的生理和病理过程;然而,体内足细胞 [Ca²⁺]i 动力学尚未完全阐明。在这里,我们开发了一种成像方法,该方法使用多光子显微镜(MPM)直接可视化活小鼠肾脏中仅在这些细胞中表达荧光钙指示剂的足细胞 [Ca²⁺]i 动力学。在对照足细胞中,[Ca²⁺]i 处于低稳态水平,而血管紧张素 II 输注仅引起轻微升高。实验性局灶性足细胞损伤会在损伤部位周围引发足细胞 [Ca²⁺]i 的剧烈和持续升高,并促进沿毛细血管环传播的细胞间足细胞 [Ca²⁺]i 波。嘌呤能 [Ca²⁺]i 信号的抑制剂以及缺乏 P2Y2 嘌呤能受体的动物可改善 [Ca²⁺]i 波的传播。增加的足细胞 [Ca²⁺]i 导致肾小球丛的收缩和毛细血管白蛋白通透性增加。在肾脏纤维化和肾小球硬化的临床前模型中,高足细胞 [Ca²⁺]i 与细胞迁移增加相关。我们的研究结果提供了体内足细胞 [Ca²⁺]i 在肾小球病理中的重要性的直观证据,并表明嘌呤能 [Ca²⁺]i 信号是足细胞损伤的一种强大且关键的致病机制。这种体内成像方法将允许未来在完整的活体肾脏中对肾小球疾病的分子和细胞机制进行详细研究。