Suppr超能文献

五指的发育受双部分长程顺式调控因子控制。

Development of five digits is controlled by a bipartite long-range cis-regulator.

机构信息

MRC-Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK.

出版信息

Development. 2014 Apr;141(8):1715-25. doi: 10.1242/dev.095430.

Abstract

Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.

摘要

内含子 DNA 中的保守性通常突出了远距离控制基因表达的调控元件。单个元件中的保守性与调控信息的关系以及内部组成与功能的关系尚不清楚。在这里,我们研究了高度保守的 ZRS(也称为 MFCS1)顺式调控因子的结构特征,该因子负责控制肢芽中 Shh 的时空表达。通过在转基因检测和内源性基因座中系统地剖析 ZRS,我们表明 ZRS 实际上由两个不同的活性域组成:一个域指导时空活性,但主要从短距离起作用,而第二个域则需要促进长距离活性。我们进一步表明,这两个域编码的活性高度整合,第二个域对于促进与基因活性相关的染色体构象变化至关重要。在肢芽发育过程中,ZRS 编码的这些活性在前后肢中被不同地解释;如果没有第二个域,前肢中就没有 Shh 活性,而在后肢中,Shh 的低水平会导致从两个到四个手指的变体数字模式。因此,在胚胎中,第二个域稳定了发育程序,为 SHH 形态发生素活性提供了缓冲,从而确保两组肢都形成五个手指。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68c/3978833/5c3b0527b2f6/DEV09543001.jpg

相似文献

1
Development of five digits is controlled by a bipartite long-range cis-regulator.
Development. 2014 Apr;141(8):1715-25. doi: 10.1242/dev.095430.
3
Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
Dev Biol. 2001 Aug 15;236(2):421-35. doi: 10.1006/dbio.2001.0346.
9
Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity.
Development. 2016 Aug 15;143(16):2994-3001. doi: 10.1242/dev.139188. Epub 2016 Jul 11.
10
GATA6 is a crucial regulator of Shh in the limb bud.
PLoS Genet. 2014 Jan;10(1):e1004072. doi: 10.1371/journal.pgen.1004072. Epub 2014 Jan 9.

引用本文的文献

1
The 3' region of the ZPA regulatory sequence (ZRS) is required for activity and contains a critical E-box.
Front Cell Dev Biol. 2025 Jul 2;13:1569573. doi: 10.3389/fcell.2025.1569573. eCollection 2025.
3
4
SNPeBoT: a tool for predicting transcription factor allele specific binding.
BMC Bioinformatics. 2025 Mar 10;26(1):81. doi: 10.1186/s12859-025-06094-4.
5
Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function.
Mol Cell. 2025 Jan 2;85(1):9-23.e9. doi: 10.1016/j.molcel.2024.11.032. Epub 2024 Dec 20.
10
The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofacial Patterning to Carcinogenesis.
FACE (Thousand Oaks). 2021 Sep;2(3):260-274. doi: 10.1177/27325016211024326. Epub 2021 Jun 18.

本文引用的文献

1
Super-resolution imaging reveals three-dimensional folding dynamics of the β-globin locus upon gene activation.
J Cell Sci. 2012 Oct 1;125(Pt 19):4630-9. doi: 10.1242/jcs.108522. Epub 2012 Jul 5.
2
Human limb abnormalities caused by disruption of hedgehog signaling.
Trends Genet. 2012 Aug;28(8):364-73. doi: 10.1016/j.tig.2012.03.012. Epub 2012 Apr 24.
3
Enhancers as information integration hubs in development: lessons from genomics.
Trends Genet. 2012 Jun;28(6):276-84. doi: 10.1016/j.tig.2012.02.008. Epub 2012 Apr 7.
5
Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness.
PLoS Genet. 2011 Nov;7(11):e1002364. doi: 10.1371/journal.pgen.1002364. Epub 2011 Nov 10.
6
Shadow enhancers foster robustness of Drosophila gastrulation.
Curr Biol. 2010 Sep 14;20(17):1562-7. doi: 10.1016/j.cub.2010.07.043.
8
Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158. Epub 2010 May 30.
10
Alizarin red staining of post-natal bone in mouse.
Cold Spring Harb Protoc. 2009 Mar;2009(3):pdb.prot5171. doi: 10.1101/pdb.prot5171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验