State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China.
State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
Nucleic Acids Res. 2023 Mar 21;51(5):2137-2150. doi: 10.1093/nar/gkad025.
Transcriptional Mediator controls diverse gene programs for various developmental and pathological processes. The human Mediator MED23/R617Q mutation was reported in a familial intellectual disability (ID) disorder, although the underlying mechanisms remain poorly understood. Constructed by gene editing, the Med23/R617Q knock-in mutant mice exhibited embryonic lethality due to the largely reduced Med23/R617Q protein level, but the R617Q mutation in HEK293T cells didn't change its expression and incorporation into Mediator Complex. RNA-seq revealed that MED23/R617Q mutation disturbed gene expression, related to neural development, learning and memory. Specifically, R617Q mutation reduced the MED23-dependent activities of ELK1 and E1A, but in contrast, upregulated the MAPK/ELK1-driven early immediate genes (IEGs) JUN and FOS. ChIP-seq and Hi-C revealed that the MED23 R617Q mutation reprogramed a subset of enhancers and local chromatin interactions, which correlated well with the corresponding gene expression. Importantly, the enhancers and chromatin interactions surrounding IEGs were unchanged by the R617Q mutation, but DACH1, an upstream repressor of IEGs, showed reduced enhancer-promoter interactions and decreased expression in mutant cells, thus relieving its inhibition to the intellectual-related IEGs. Overall, unraveling the MED23-DACH1-IEG axis provides a mechanistic explanation for the effects of the MED23/R617Q mutation on gene dysregulation and inherited ID.
转录中介体控制着各种发育和病理过程的不同基因程序。人类中介体 MED23/R617Q 突变已在家族性智力障碍 (ID) 疾病中报道,尽管其潜在机制仍知之甚少。通过基因编辑构建的 Med23/R617Q 敲入突变小鼠由于 Med23/R617Q 蛋白水平大大降低而表现出胚胎致死性,但 HEK293T 细胞中的 R617Q 突变并未改变其表达和中介体复合物的掺入。RNA-seq 显示 MED23/R617Q 突变扰乱了与神经发育、学习和记忆相关的基因表达。具体而言,R617Q 突变降低了 MED23 依赖性 ELK1 和 E1A 的活性,但相反,上调了 MAPK/ELK1 驱动的早期即刻基因 (IEGs) JUN 和 FOS。ChIP-seq 和 Hi-C 揭示了 MED23 R617Q 突变重新编程了一组增强子和局部染色质相互作用,这与相应的基因表达密切相关。重要的是,IEGs 周围的增强子和染色质相互作用不受 R617Q 突变的影响,但 IEGs 的上游抑制剂 DACH1 在突变细胞中的增强子-启动子相互作用减少且表达降低,从而解除了对智力相关 IEGs 的抑制。总体而言,揭示 MED23-DACH1-IEG 轴为 MED23/R617Q 突变对基因失调和遗传性 ID 的影响提供了机制解释。