Nguyen Hal X, Nekanti Usha, Haus Daniel L, Funes Gabrielle, Moreno Denisse, Kamei Noriko, Cummings Brian J, Anderson Aileen J
Physical Medicine & Rehabilitation, University of California, Irvine, California; Anatomy and Neurobiology, University of California, Irvine, California; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California.
J Comp Neurol. 2014 Aug 15;522(12):2767-83. doi: 10.1002/cne.23604. Epub 2014 Apr 25.
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) can differentiate into many cell types and are important for regenerative medicine; however, further work is needed to reliably differentiate hESC and hiPSC into neural-restricted multipotent derivatives or specialized cell types under conditions that are free from animal products. Toward this goal, we tested the transition of hESC and hiPSC lines onto xeno-free (XF) / feeder-free conditions and evaluated XF substrate preference, pluripotency, and karyotype. Critically, XF transitioned H9 hESC, Shef4 hESC, and iPS6-9 retained pluripotency (Oct-4 and NANOG), proliferation (MKI67 and PCNA), and normal karyotype. Subsequently, XF transitioned hESC and hiPSC were induced with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to generate neuralized spheres containing primitive neural precursors, which could differentiate into astrocytes and neurons, but not oligoprogenitors. Further neuralization of spheres via LIF supplementation and attachment selection on CELLstart substrate generated adherent human neural stem cells (hNSC) with normal karyotype and high proliferation potential under XF conditions. Interestingly, adherent hNSC derived from H9, Shef4, and iPS6-9 differentiated into significant numbers of O4+ oligoprogenitors (∼20-30%) with robust proliferation; however, very few GalC+ cells were observed (∼2-4%), indicative of early oligodendrocytic lineage commitment. Overall, these data demonstrate the transition of multiple hESC and hiPSC lines onto XF substrate and media conditions, and a reproducible neuralization method that generated neural derivatives with multipotent cell fate potential and normal karyotype.
人类胚胎干细胞(hESC)和诱导多能干细胞(hiPSC)可分化为多种细胞类型,对再生医学至关重要;然而,还需要进一步研究,以便在无动物产品的条件下,将hESC和hiPSC可靠地分化为神经限制性多能衍生物或特定细胞类型。为实现这一目标,我们测试了hESC和hiPSC系向无外源物(XF)/无饲养层条件的转变,并评估了XF底物偏好、多能性和核型。至关重要的是,向XF条件转变后的H9 hESC、Shef4 hESC和iPS6-9保留了多能性(Oct-4和NANOG)、增殖能力(MKI67和PCNA)以及正常核型。随后,用表皮生长因子(EGF)和碱性成纤维细胞生长因子(bFGF)诱导向XF条件转变后的hESC和hiPSC,以生成含有原始神经前体的神经球,这些神经球可分化为星形胶质细胞和神经元,但不能分化为少突胶质前体细胞。通过添加白血病抑制因子(LIF)并在CELLstart底物上进行贴壁选择,进一步对神经球进行神经化,在XF条件下产生了具有正常核型和高增殖潜力的贴壁人类神经干细胞(hNSC)。有趣的是,源自H9、Shef4和iPS6-9的贴壁hNSC分化出大量具有强劲增殖能力的O4+少突胶质前体细胞(约20-30%);然而,仅观察到极少的GalC+细胞(约2-4%),这表明少突胶质细胞系的早期定向分化。总体而言,这些数据证明了多个hESC和hiPSC系向XF底物和培养基条件的转变,以及一种可重复的神经化方法,该方法产生了具有多能细胞命运潜力和正常核型的神经衍生物。