Suppr超能文献

The antitumor intercalating drug ditercalinium binds preferentially to RNA in Friend erythroleukemia cells.

作者信息

Traganos F, Bueti C, Kapuscinski J, Darzynkiewicz Z

机构信息

Experimental Cell Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York 10021.

出版信息

Leukemia. 1989 Jul;3(7):522-9.

PMID:2471903
Abstract

Ditercalinium (DIT; NSC 335153), a 7H-pyridocarbazole dimer, was reported to be capable of binding with high affinity to DNA by bisintercalation. Both the cytostatic and cytotoxic effects of this drug have been attributed to its binding to DNA. DIT inhibits the growth and is cytotoxic to Friend erythroleukemia (FL) cells. When FL cells were treated with 0.5-2.5 microM DIT and then stained with acridine orange (AO), which differentially stains DNA and RNA, the green, orthochromatic fluorescence representing AO binding to DNA was unchanged, while the metachromatic red luminescence characteristic of AO binding to RNA was reduced by as much as 40% in 4 hr; the effect was DIT-concentration dependent. The reduction in RNA stainability by DIT in the absence of any significant decrease in RNA content, was also observed with another RNA-specific fluorochrome, pyronin Y (PY). These results indicate that in live cells DIT preferentially binds to RNA rather than DNA, preventing stainability of the former by the monointercalating dyes AO and PY. When FL cells were exposed to 10 microM DIT after being first permeabilized by ethanol, the subsequent stainability of DNA in these cells was reduced by up to 67% and RNA by up to 44%, indicating that under these conditions DIT binds to both DNA and RNA. This observation was confirmed by competition experiments between AO and DIT bound to DNA or RNA in permeabilized cells mixed with equivalent numbers of RNA-containing (DNase-treated) or DNA-containing (RNase-treated) cells, respectively. The mechanisms that protect DNA against binding by DIT in live cells are unknown but are lost in fixed cells and may be related to maintenance of cellular and/or nuclear membrane integrity. If the propensity for other intercalating drugs to bind to RNA in live cells is correlated with their antitumor activity as is DIT, the rationale for designing new drugs based solely on their affinity for DNA should be reevaluated.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验