Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
J Am Chem Soc. 2014 Apr 30;136(17):6191-4. doi: 10.1021/ja501513t. Epub 2014 Apr 22.
Plasma-enhanced atomic layer deposition of cobalt oxide onto nanotextured p(+)n-Si devices enables efficient photoelectrochemical water oxidation and effective protection of Si from corrosion at high pH (pH 13.6). A photocurrent density of 17 mA/cm(2) at 1.23 V vs RHE, saturation current density of 30 mA/cm(2), and photovoltage greater than 600 mV were achieved under simulated solar illumination. Sustained photoelectrochemical water oxidation was observed with no detectable degradation after 24 h. Enhanced performance of the nanotextured structure, compared to planar Si, is attributed to a reduced silicon oxide thickness that provides more intimate interfacial contact between the light absorber and catalyst. This work highlights a general approach to improve the performance and stability of Si photoelectrodes by engineering the catalyst/semiconductor interface.
通过等离子体增强原子层沉积在纳米纹理 p(+)n-Si 器件上沉积氧化钴,实现了高效的光电化学水氧化,并在高 pH 值(pH 13.6)下有效保护 Si 免受腐蚀。在模拟太阳光照射下,实现了 17 mA/cm(2)的光电流密度、1.23 V vs RHE 的饱和电流密度和大于 600 mV 的光电压。在 24 小时后,观察到持续的光电化学水氧化,没有可检测到的降解。与平面 Si 相比,纳米纹理结构的增强性能归因于氧化硅厚度的减小,这为光吸收体和催化剂之间提供了更紧密的界面接触。这项工作突出了一种通过工程化催化剂/半导体界面来提高 Si 光电电极性能和稳定性的通用方法。