Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
Institut Langevin, ESPCI and CNRS, UMR CNRS 7587, 1 rue Jussieu, 75005 Paris, France.
Phys Rev Lett. 2014 Mar 28;112(12):124101. doi: 10.1103/PhysRevLett.112.124101. Epub 2014 Mar 24.
The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.
在非线性色散介质中形成的极端局域化现象,可以在非线性演化方程的框架内得到解释和描述,例如非线性薛定谔方程(NLS)。在精确 NLS 呼吸子解的类中,这些解描述了单色波列的调制不稳定性,其中时空局域化的有理解层次结构被认为是为模型孤子波动力学提供适当原型的方法。在这里,我们利用 NLS 的时间反演不变性,提出并实验证明了一种新的构建时空聚焦的强非线性局域波的方法。这种时间反演方法的潜在应用包括远程传感以及在其他非线性色散介质(如光学、玻色-爱因斯坦凝聚体和等离子体)中类似的实验分析,其中波的运动动力学由 NLS 来控制。