MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China.
J Am Chem Soc. 2014 Apr 30;136(17):6437-45. doi: 10.1021/ja5015635. Epub 2014 Apr 22.
An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.
人们首次尝试了在三维超支化二氧化钛结构上进行适当功能化的集成,以构建高效的多堆叠光电阳极,该结构是通过层层组装超支化分级树状二氧化钛纳米线(底层)、分支分级榴梿状二氧化钛亚微米空心球(中间层)和超支化分级刺猬状二氧化钛微米球(顶层)来构建的。由于有利的电荷收集、更高的光捕获效率和延长的电子寿命,多层 TiO2 基器件的 J(sc)和 V(oc)均高于传统 TiO2 纳米颗粒(TNP),并实现了 11.01%的整体功率转换效率(J(sc)=18.53 mA cm(-2);V(oc)=827 mV 和 FF = 0.72),明显优于具有相似薄膜厚度的 TNP 基参考电池(η=7.62%)。同时,这种简便且可操作的薄膜制造技术(水热法和滴铸法)为可持续的高性能/成本比光伏器件的处理提供了一种很有前景的方案和极大的简单性。