Hosoya Natsuki, Takegami Ryuta, Suzumura Jun-ichi, Yada Keizo, Miyajima Ken, Mitsui Masaaki, Knickelbein Mark B, Yabushita Satoshi, Nakajima Atsushi
Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
J Phys Chem A. 2014 Sep 18;118(37):8298-308. doi: 10.1021/jp5011007. Epub 2014 Apr 14.
Organoeuropium sandwich clusters, comprising europium (Eu) and 1,3,5,7-cyclooctatetraene (COT) (Eu(n)(COT)(m)), were produced in the gas phase using a laser vaporization synthesis method. Photoionization mass spectra revealed an exclusive Eu(n)(COT)(m) formation with three compositions: m = n + 1, m = n, and m = n - 1, which, we propose, correspond to full-sandwich, half-sandwich, and inverted-sandwich structures, respectively. The charge distributions, metal-ligand bonding characteristics, and electronic structures of the clusters were comprehensively investigated by photoionization measurements of Eu(n)(COT)(m) neutrals and by photoelectron spectroscopy of Eu(n)(COT)(m)(-) and isoelectronic Ba(n)(COT)(m)(-) anions. The results confirmed that (1) highly ionic metal-ligand bonding is formed between Eu(2+) and COT(2-) within the sandwich structure (at the termini, ionic forms are Eu(+) and COT(-)) and (2) size dependence of orbital energy can be explained by the Coulombic interaction of simple point charge models between the detaching electrons and dipoles/quadrupoles. When the terminus of the sandwich clusters is Eu(2+), COT(2-), or Eu(0), the orbital energy of the electron detachment channel at the opposite terminus strongly depends on the cluster size. In this case, the molecular stack behaves as a one-dimensionally aligned dipole; otherwise, it behaves as a quadrupole, and the relationship between cluster size and electron detachment energy is much weaker. The study also reports on the 4f orbital energy in Eu ions and the formation mechanism of organoeuropium sandwich nanowires up to 12 nm in length. The nanowires are formed by successive charge transfer at the terminal part, Eu(+) and COT(-), which reduces the ionization energy and increases the electron affinity, respectively.
通过激光汽化合成法在气相中制备了包含铕(Eu)和1,3,5,7-环辛四烯(COT)的有机铕夹心簇合物(Eu(n)(COT)(m))。光电离质谱显示仅形成了具有三种组成的Eu(n)(COT)(m):m = n + 1、m = n和m = n - 1,我们认为它们分别对应于全夹心、半夹心和反夹心结构。通过对Eu(n)(COT)(m)中性分子的光电离测量以及对Eu(n)(COT)(m)(-)和等电子体Ba(n)(COT)(m)(-)阴离子的光电子能谱,对这些簇合物的电荷分布、金属-配体键合特性和电子结构进行了全面研究。结果证实:(1)在夹心结构内Eu(2+)和COT(2-)之间形成了高度离子性的金属-配体键(在末端,离子形式为Eu(+)和COT(-));(2)轨道能量的尺寸依赖性可以通过分离电子与偶极子/四极子之间简单点电荷模型的库仑相互作用来解释。当夹心簇的末端为Eu(2+)、COT(2-)或Eu(0)时,相对末端电子脱离通道的轨道能量强烈依赖于簇的尺寸。在这种情况下,分子堆叠表现为一维排列的偶极子;否则,它表现为四极子,且簇尺寸与电子脱离能之间的关系要弱得多。该研究还报道了Eu离子中的4f轨道能量以及长达12 nm的有机铕夹心纳米线的形成机制。纳米线是通过末端部分Eu(+)和COT(-)的连续电荷转移形成的,这分别降低了电离能并增加了电子亲和力。