Suppr超能文献

从电子病历预测患者病情严重程度。

Predicting patient acuity from electronic patient records.

作者信息

Kontio Elina, Airola Antti, Pahikkala Tapio, Lundgren-Laine Heljä, Junttila Kristiina, Korvenranta Heikki, Salakoski Tapio, Salanterä Sanna

机构信息

University of Turku, Department of Nursing Science, Finland; Turku University of Applied Sciences, Finland.

University of Turku, Department of Information Technology, Finland.

出版信息

J Biomed Inform. 2014 Oct;51:35-40. doi: 10.1016/j.jbi.2014.04.001. Epub 2014 Apr 12.

Abstract

BACKGROUND

The ability to predict acuity (patients' care needs), would provide a powerful tool for health care managers to allocate resources. Such estimations and predictions for the care process can be produced from the vast amounts of healthcare data using information technology and computational intelligence techniques. Tactical decision-making and resource allocation may also be supported with different mathematical optimization models.

METHODS

This study was conducted with a data set comprising electronic nursing narratives and the associated Oulu Patient Classification (OPCq) acuity. A mathematical model for the automated assignment of patient acuity scores was utilized and evaluated with the pre-processed data from 23,528 electronic patient records. The methods to predict patient's acuity were based on linguistic pre-processing, vector-space text modeling, and regularized least-squares regression.

RESULTS

The experimental results show that it is possible to obtain accurate predictions about patient acuity scores for the coming day based on the assigned scores and nursing notes from the previous day. Making same-day predictions leads to even better results, as access to the nursing notes for the same day boosts the predictive performance. Furthermore, textual nursing notes allow for more accurate predictions than previous acuity scores. The best results are achieved by combining both of these information sources. The developed model achieves a concordance index of 0.821 when predicting the patient acuity scores for the following day, given the scores and text recorded on the previous day.

CONCLUSIONS

By applying language technology to electronic patient documents it is possible to accurately predict the value of the acuity scores of the coming day based on the previous daýs assigned scores and nursing notes.

摘要

背景

预测 acuity(患者的护理需求)的能力,将为医疗保健管理者分配资源提供一个强大的工具。利用信息技术和计算智能技术,可以从大量的医疗保健数据中得出对护理过程的此类估计和预测。不同的数学优化模型也可以支持战术决策和资源分配。

方法

本研究使用了一个数据集,该数据集包括电子护理记录和相关的奥卢患者分类(OPCq) acuity。利用一个用于自动分配患者 acuity 分数的数学模型,并使用来自23528份电子患者记录的预处理数据进行评估。预测患者 acuity 的方法基于语言预处理、向量空间文本建模和正则化最小二乘回归。

结果

实验结果表明,根据前一天的分配分数和护理记录,可以对次日患者的 acuity 分数做出准确预测。进行当日预测会得到更好的结果,因为获取当日的护理记录会提高预测性能。此外,文本护理记录比之前的 acuity 分数能做出更准确的预测。将这两个信息源结合起来可取得最佳结果。在根据前一天记录的分数和文本预测次日患者 acuity 分数时,所开发的模型的一致性指数达到0.821。

结论

通过将语言技术应用于电子患者文档,可以根据前一天的分配分数和护理记录准确预测次日 acuity 分数的值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验