Stahnke Marie-Jeannette, Dickel Corinna, Schröder Sabine, Kaiser Diana, Blume Roland, Stein Roland, Pouponnot Celio, Oetjen Elke
Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany.
Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Cell Signal. 2014 Sep;26(9):1792-9. doi: 10.1016/j.cellsig.2014.04.006. Epub 2014 Apr 12.
Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2.
胰岛素生物合成是β细胞的一项基本功能,不适当的胰岛素分泌和生物合成会导致2型糖尿病的发病机制。先前的研究表明,双亮氨酸拉链激酶(DLK)可诱导β细胞凋亡。由于β细胞功能障碍先于β细胞丢失,因此在本研究中,在HIT-T15β细胞系中研究了DLK对胰岛素基因转录的影响。内源性DLK的下调增加,而DLK的过表达则降低了人胰岛素基因的转录。5'-和3'-缺失人胰岛素启动子分析导致鉴定出一个DLK反应元件,该元件定位于β细胞特异性转录因子MafA的DNA结合位点。DLK野生型而非其激酶失活突变体的过表达抑制了由其反式激活域赋予的MafA转录活性。此外,在非β细胞系JEG中,DLK抑制了MafA过表达诱导的人胰岛素启动子活性。将MafA和DLK或其激酶失活突变体过表达到JEG细胞中发现,DLK而非其突变体降低了MafA蛋白含量。SP600125对下游DLK激酶c-Jun N末端激酶(JNK)的抑制减弱了DLK诱导的MafA丢失。此外,将丝氨酸65突变为丙氨酸可赋予MafA蛋白稳定性,增加了MafA依赖的胰岛素基因转录,并防止了JEG细胞中DLK诱导的MafA丢失。这些数据表明,DLK通过激活JNK触发MafA的磷酸化和降解,从而减弱胰岛素基因转录。鉴于MafA对β细胞功能的重要性,抑制DLK可能会保留β细胞功能,并最终延缓2型糖尿病的发展。