Singh Suruchi, Sarkar Abhijit, Agrawal S B, Agrawal Madhoolika
Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
Protoplasma. 2014 Nov;251(6):1395-405. doi: 10.1007/s00709-014-0641-0. Epub 2014 Apr 12.
In the present study, the response of kidney bean (Phaseolus vulgaris L. cv. Pusa Komal) plants was evaluated under three different levels of ultraviolet-B (UV-B), i.e., excluded UV-B (eUV-B), ambient UV-B (aUV-B; 5.8 kJ m(-2) day(-1)), and supplemental UV-B (sUV-B; 280-315 nm; ambient + 7.2 kJ m(-2) day(-1)), under near-natural conditions. eUV-B treatment clearly demonstrated that both aUV-B and sUV-B are capable of causing significant changes in the plant's growth, metabolism, economic yield, genome template stability, total protein, and antioxidative enzyme profiles. The experimental findings showed maximum plant height at eUV-B, but biomass accumulation was minimum. Significant reductions in quantum yield (Fv/Fm) were observed under both aUV-B and sUV-B, as compared to eUV-B. UV-B-absorbing flavonoids increased under higher UV-B exposures with consequent increments in phenylalanine ammonia lyase (PAL) activities. The final yield was significantly higher in plants grown under eUV-B, compared to those under aUV-B and sUV-B. Total protein profile through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analysis of isoenzymes, like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR), through native PAGE revealed major changes in the leaf proteome under aUV-B and sUV-B, depicting induction of some major stress-related proteins. The random amplified polymorphic DNA (RAPD) profile of genomic DNA also indicated a significant reduction of genome template stability under UV-B exposure. Thus, it can be inferred that more energy is diverted for inducing protection mechanisms rather than utilizing it for growth under high UV-B level.
在本研究中,在近自然条件下,对菜豆(菜豆属普通菜豆品种Pusa Komal)植株在三种不同水平的紫外线-B(UV-B)下的反应进行了评估,即排除UV-B(eUV-B)、环境UV-B(aUV-B;5.8 kJ m(-2) 天(-1))和补充UV-B(sUV-B;280 - 315 nm;环境水平 + 7.2 kJ m(-2) 天(-1))。eUV-B处理清楚地表明,aUV-B和sUV-B都能够在植物的生长、代谢、经济产量、基因组模板稳定性、总蛋白和抗氧化酶谱方面引起显著变化。实验结果表明,eUV-B条件下植株高度最高,但生物量积累最少。与eUV-B相比,在aUV-B和sUV-B条件下均观察到量子产率(Fv/Fm)显著降低。在较高的UV-B照射下,吸收UV-B的黄酮类化合物增加,随之苯丙氨酸解氨酶(PAL)活性增加。与aUV-B和sUV-B条件下生长的植株相比,eUV-B条件下生长的植株最终产量显著更高。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析总蛋白谱,并通过非变性聚丙烯酰胺凝胶电泳分析超氧化物歧化酶(SOD)、过氧化物酶(POX)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、愈创木酚过氧化物酶(GPX)和谷胱甘肽还原酶(GR)等同工酶,结果显示aUV-B和sUV-B条件下叶片蛋白质组发生了重大变化,表明诱导了一些主要的胁迫相关蛋白。基因组DNA的随机扩增多态性DNA(RAPD)图谱也表明,UV-B照射下基因组模板稳定性显著降低。因此,可以推断,在高UV-B水平下,更多的能量被用于诱导保护机制,而不是用于生长。