Chen Hsieh, Alexander-Katz Alfredo
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032602. doi: 10.1103/PhysRevE.89.032602. Epub 2014 Mar 21.
Using hydrodynamic simulations, we demonstrate that confined colloidal suspensions can greatly enhance the unfolding of collapsed single polymers in flow. When colloids come in direct contact with the polymers due to the flow, the collapsed chains become flattened or elongated on the surface of the colloids, increasing the probability of forming large chain protrusions that the flow can pull out to unfold the polymers. This phenomenon may be suppressed if the colloid size is commensurate with the confining channels, where the colloids form well-defined banding structures. Here, we analyze the colloid banding structures in detail and their relation to the chain unfolding. We find that for colloid volume fractions up to 30%, the confined colloids form simple cubic (sc), hexagonal (hex), or a mixture of sc + hex structures. By directly changing the heights of the confining channels, we show that the collapsed polymers unfold the most in the mixed sc + hex structures. The diffuse (not well-defined) bands in the mixed sc + hex structures provide the highest collision probability for the colloids and the polymers, thus enhancing unfolding the most. Without colloidal suspensions, we show that the confining channels alone do not have an observable effect on the unfolding of collapsed polymers. The well-defined colloid bands also suppress the unfolding of noncollapsed polymers. In fact, the average size for noncollapsed chains is even smaller in the well-defined bands than in a channel without any colloids. The appearance of well-defined bands in this case also indicates that lift forces experienced by the polymers in confinement are negligible compared to those exerted by the colloidal band structures. Our results may be important for understanding the dynamics of mixed colloid polymer solutions.
通过流体动力学模拟,我们证明受限胶体悬浮液能够极大地增强流动中塌陷单聚合物的展开。当由于流动胶体与聚合物直接接触时,塌陷的链在胶体表面变平或拉长,增加了形成大链突起的可能性,流动可以将这些突起拉出以展开聚合物。如果胶体尺寸与受限通道相当,这种现象可能会受到抑制,此时胶体会形成明确的带状结构。在这里,我们详细分析了胶体带状结构及其与链展开的关系。我们发现,对于高达30%的胶体体积分数,受限胶体形成简单立方(sc)、六方(hex)或sc + hex结构的混合物。通过直接改变受限通道的高度,我们表明塌陷的聚合物在sc + hex混合结构中展开得最多。sc + hex混合结构中的弥散(不明确)带为胶体和聚合物提供了最高的碰撞概率,从而最大程度地增强了展开。我们表明,没有胶体悬浮液时,仅受限通道对塌陷聚合物展开没有可观察到的影响。明确的胶体带也抑制了未塌陷聚合物的展开。事实上,在明确的带中,未塌陷链的平均尺寸甚至比没有任何胶体的通道中的还要小。在这种情况下明确带的出现还表明,与胶体带结构施加的力相比,聚合物在受限中所经历的升力可以忽略不计。我们的结果对于理解混合胶体聚合物溶液的动力学可能很重要。