Suppr超能文献

利用退伍军人事务部行政数据识别急性腰痛退伍军人:一项试点研究。

Use of Department of Veterans Affairs administrative data to identify veterans with acute low back pain: a pilot study.

作者信息

Lisi Anthony J, Burgo-Black A Lucile, Kawecki Todd, Brandt Cynthia A, Goulet Joseph L

机构信息

*VA Connecticut Health Care System, West Haven, CT †University of Bridgeport College of Chiropractic, Bridgeport, CT; and ‡Department of Internal Medicine §Department of Emergency Medicine; and ¶Department of Psychiatry, Yale University School of Medicine, New Haven, CT.

出版信息

Spine (Phila Pa 1976). 2014 Jun 15;39(14):1151-6. doi: 10.1097/BRS.0000000000000350.

Abstract

STUDY DESIGN

This work compared administrative data obtained from the Department of Veterans Affairs (VA) databases with structured chart review.

OBJECTIVE

We set out to determine whether a decision tool using administrative data could discriminate acute from nonacute cases among the many patients seen for a low back pain (LBP)-related diagnosis.

SUMMARY OF BACKGROUND DATA

Large health care systems' databases present an opportunity for conducting research and planning operations related to the management of highly burdensome conditions. An efficient method of identifying cases of acute LBP in these databases may be useful.

METHODS

This was a retrospective review of all consecutive Iraq and/or Afghanistan Veterans seen in a VA primary care service during a 6-month period. Administrative data were extracted from VA databases. Patients with at least 1 encounter that was coded with at least 1 LBP-related ICD-9 code were included. Structured chart review of electronic medical record free text was the "gold standard" to determine acute LBP cases. Logistic regression models were used to assess the association of administrative data variables with chart review findings.

RESULTS

We obtained complete data on 354 patient encounters, of which 83 (23.4%) were designated acute upon chart review. No diagnostic code was more likely to be used in acute cases than nonacute. We identified an administrative data model of 18 variables that were significant and positively associated with an acute case (C-statistic = 0.819). A reduced model of 5 variables including a lumbar magnetic resonance imaging order, tramadol prescription, skeletal muscle relaxant prescription, physical therapy order, and addition of a new LBP-related ICD-9 code to the electronic medical record remained reasonable (C-statistic = 0.784).

CONCLUSION

Our results suggest that a decision model can identify acute from nonacute LBP cases in Veterans using readily available VA administrative data.

LEVEL OF EVIDENCE

N/A.

摘要

研究设计

本研究将从退伍军人事务部(VA)数据库获取的管理数据与结构化图表审查进行了比较。

目的

我们旨在确定一种使用管理数据的决策工具能否在众多因腰痛(LBP)相关诊断就诊的患者中区分急性病例和非急性病例。

背景数据概述

大型医疗保健系统的数据库为开展与管理高负担疾病相关的研究和规划操作提供了机会。在这些数据库中识别急性LBP病例的有效方法可能会很有用。

方法

这是一项对在6个月期间VA初级保健服务中就诊的所有连续的伊拉克和/或阿富汗退伍军人的回顾性研究。从VA数据库中提取管理数据。纳入至少有1次就诊且至少有1个与LBP相关的ICD - 9编码的患者。对电子病历自由文本进行结构化图表审查是确定急性LBP病例的“金标准”。使用逻辑回归模型评估管理数据变量与图表审查结果之间的关联。

结果

我们获得了354次患者就诊的完整数据,其中83次(23.4%)经图表审查被判定为急性。在急性病例中,没有任何诊断编码比非急性病例更常被使用。我们确定了一个由18个变量组成的管理数据模型,这些变量与急性病例显著正相关(C统计量 = 0.819)。一个简化模型,包含5个变量,即腰椎磁共振成像检查医嘱、曲马多处方、骨骼肌松弛剂处方、物理治疗医嘱以及在电子病历中新增一个与LBP相关ICD - 9编码,其合理性仍然较高(C统计量 = 0.784)。

结论

我们的结果表明,一个决策模型可以利用现有的VA管理数据在退伍军人中区分急性和非急性LBP病例。

证据级别

无可用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验