Suppr超能文献

非负矩阵分解的集成聚类可以从基因谱数据中揭示出一致的功能组。

Integrative clustering by nonnegative matrix factorization can reveal coherent functional groups from gene profile data.

机构信息

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

出版信息

IEEE J Biomed Health Inform. 2015 Mar;19(2):698-708. doi: 10.1109/JBHI.2014.2316508. Epub 2014 Apr 10.

Abstract

Recent developments in molecular biology and techniques for genome-wide data acquisition have resulted in abundance of data to profile genes and predict their function. These datasets may come from diverse sources and it is an open question how to commonly address them and fuse them into a joint prediction model. A prevailing technique to identify groups of related genes that exhibit similar profiles is profile-based clustering. Cluster inference may benefit from consensus across different clustering models. In this paper, we propose a technique that develops separate gene clusters from each of available data sources and then fuses them by means of nonnegative matrix factorization. We use gene profile data on the budding yeast S. cerevisiae to demonstrate that this approach can successfully integrate heterogeneous datasets and yield high-quality clusters that could otherwise not be inferred by simply merging the gene profiles prior to clustering.

摘要

近年来分子生物学的发展和全基因组数据获取技术的进步,产生了大量用于分析基因并预测其功能的数据集。这些数据集可能来自不同的来源,如何共同处理它们并将它们融合到一个联合预测模型中,这是一个悬而未决的问题。一种流行的识别具有相似特征的相关基因群的方法是基于特征的聚类。聚类推断可以从不同聚类模型的共识中受益。在本文中,我们提出了一种从每个可用数据源中开发独立基因簇的技术,然后通过非负矩阵分解将它们融合在一起。我们使用酿酒酵母 S. cerevisiae 的基因表达谱数据来证明这种方法可以成功地整合异构数据集,并产生高质量的聚类,否则在聚类之前简单地合并基因谱是无法推断出这些聚类的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验