Suppr超能文献

一条普遍原则支配着视网膜神经节细胞依赖视觉的树突形态形成。

A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

作者信息

Xu Hong-Ping, Sun Jin Hao, Tian Ning

机构信息

Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520.

出版信息

J Comp Neurol. 2014 Oct 15;522(15):3403-22. doi: 10.1002/cne.23609. Epub 2014 Apr 29.

Abstract

Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

摘要

视网膜神经节细胞(RGCs)的树突分支在视觉场景的特定区域收集信息。树突的覆盖区域和分支密度决定了单个细胞对视野的采样比例以及采样分辨率。然而,目前尚不清楚RGCs分支模式的建立是否需要视觉刺激,以及是否存在一个通用原则指导不同RGCs的树突模式形成。通过分析RGCs树突的几何结构,我们发现RGCs的树突分支在睁眼后经历了显著的空间重排。剥夺光线会阻碍树突生长和分支模式形成,这表明视觉刺激是RGCs获得特定分支模式所必需的。我们进一步表明,依赖视觉的树突生长和分支细化主要发生在树突树的中部。这种非比例生长和选择性细化表明,RGCs的后期树突发育不是随着眼睛生长的被动伸展,而是由视觉活动驱动的RGCs树突分支选择性生长/消除的主动过程。最后,我们的数据表明,在逐个细胞的基础上,RGCs的覆盖区域和树突分支密度之间存在幂律关系。无论细胞类型、视网膜位置或发育阶段如何,当RGCs覆盖较大区域时,其密度系统地较低。这些结果表明,一个通用的结构设计原则指导了RGCs依赖视觉的模式形成。

相似文献

1
A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.
J Comp Neurol. 2014 Oct 15;522(15):3403-22. doi: 10.1002/cne.23609. Epub 2014 Apr 29.
2
Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion.
J Neurosci. 2017 Dec 13;37(50):12247-12262. doi: 10.1523/JNEUROSCI.2098-17.2017. Epub 2017 Nov 7.
3
Factors controlling the dendritic arborization of retinal ganglion cells.
Vis Neurosci. 1996 Jul-Aug;13(4):721-33. doi: 10.1017/s0952523800008609.
7
Early neural activity and dendritic growth in turtle retinal ganglion cells.
Eur J Neurosci. 2006 Aug;24(3):773-86. doi: 10.1111/j.1460-9568.2006.04933.x.
8
Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina.
Neuron. 2003 Jul 3;39(1):85-96. doi: 10.1016/s0896-6273(03)00389-1.
9
Receptive field structure-function correlates in developing turtle retinal ganglion cells.
Eur J Neurosci. 2006 Aug;24(3):787-94. doi: 10.1111/j.1460-9568.2006.04971.x.
10
Developmental maturation of passive electrical properties in retinal ganglion cells of rainbow trout.
J Physiol. 2003 Apr 1;548(Pt 1):71-83. doi: 10.1113/jphysiol.2002.034637. Epub 2003 Feb 7.

引用本文的文献

1
Spatial registration of neuron morphologies based on maximization of volume overlap.
BMC Bioinformatics. 2018 Apr 18;19(1):143. doi: 10.1186/s12859-018-2136-z.
2
The effects of immune protein CD3ζ development and degeneration of retinal neurons after optic nerve injury.
PLoS One. 2017 Apr 25;12(4):e0175522. doi: 10.1371/journal.pone.0175522. eCollection 2017.
3
Role for Visual Experience in the Development of Direction-Selective Circuits.
Curr Biol. 2016 May 23;26(10):1367-75. doi: 10.1016/j.cub.2016.03.073. Epub 2016 May 5.
4
Are visual peripheries forever young?
Neural Plast. 2015;2015:307929. doi: 10.1155/2015/307929. Epub 2015 Apr 6.

本文引用的文献

1
Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types.
Curr Biol. 2014 Feb 3;24(3):310-5. doi: 10.1016/j.cub.2013.12.020. Epub 2014 Jan 16.
3
A general principle of neural arbor branch density.
Curr Biol. 2011 Dec 20;21(24):2105-8. doi: 10.1016/j.cub.2011.11.013. Epub 2011 Dec 8.
4
Developmental mechanisms that regulate retinal ganglion cell dendritic morphology.
Dev Neurobiol. 2011 Dec;71(12):1297-309. doi: 10.1002/dneu.20900.
5
Physiological clustering of visual channels in the mouse retina.
J Neurophysiol. 2011 Apr;105(4):1516-30. doi: 10.1152/jn.00331.2010. Epub 2011 Jan 27.
6
NMDA receptor contributions to visual contrast coding.
Neuron. 2010 Jul 29;67(2):280-93. doi: 10.1016/j.neuron.2010.06.020.
7
A universal property of axonal and dendritic arbors.
Neuron. 2010 Apr 15;66(1):45-56. doi: 10.1016/j.neuron.2010.02.013.
8
The immune protein CD3zeta is required for normal development of neural circuits in the retina.
Neuron. 2010 Feb 25;65(4):503-15. doi: 10.1016/j.neuron.2010.01.035.
9
Changing dendritic field size of mouse retinal ganglion cells in early postnatal development.
Dev Neurobiol. 2010 May;70(6):397-407. doi: 10.1002/dneu.20777.
10
Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12536-41. doi: 10.1073/pnas.0901530106. Epub 2009 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验