Suppr超能文献

相似文献

1
PharmDock: a pharmacophore-based docking program.
J Cheminform. 2014 Apr 16;6:14. doi: 10.1186/1758-2946-6-14. eCollection 2014.
2
WATsite: hydration site prediction program with PyMOL interface.
J Comput Chem. 2014 Jun 15;35(16):1255-60. doi: 10.1002/jcc.23616. Epub 2014 Apr 22.
3
Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
J Chem Inf Model. 2014 Oct 27;54(10):2697-717. doi: 10.1021/ci5003735. Epub 2014 Sep 30.
4
WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization.
Methods Mol Biol. 2017;1611:123-134. doi: 10.1007/978-1-4939-7015-5_10.
5
Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
J Chem Inf Model. 2019 Aug 26;59(8):3572-3583. doi: 10.1021/acs.jcim.9b00371. Epub 2019 Aug 16.
6
Combining docking with pharmacophore filtering for improved virtual screening.
J Cheminform. 2009 May 20;1(1):6. doi: 10.1186/1758-2946-1-6.
7
Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking.
J Chem Inf Model. 2013 May 24;53(5):1179-90. doi: 10.1021/ci400143r. Epub 2013 May 13.
8
Calculation of Thermodynamic Properties of Bound Water Molecules.
Methods Mol Biol. 2018;1762:389-402. doi: 10.1007/978-1-4939-7756-7_19.
9
DockingPie: a consensus docking plugin for PyMOL.
Bioinformatics. 2022 Sep 2;38(17):4233-4234. doi: 10.1093/bioinformatics/btac452.

引用本文的文献

1
Building shape-focused pharmacophore models for effective docking screening.
J Cheminform. 2024 Aug 9;16(1):97. doi: 10.1186/s13321-024-00857-6.
2
Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
J Chem Inf Model. 2024 Mar 25;64(6):2084-2100. doi: 10.1021/acs.jcim.3c01969. Epub 2024 Mar 8.
3
Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels.
Int J Mol Sci. 2023 May 25;24(11):9226. doi: 10.3390/ijms24119226.
4
Cosolvent Sites-Based Discovery of Protein Kinase G Inhibitors.
J Med Chem. 2022 Jul 28;65(14):9691-9705. doi: 10.1021/acs.jmedchem.1c02012. Epub 2022 Jun 23.
5
The unequivocal preponderance of biocomputation in clinical virology.
RSC Adv. 2018 May 18;8(31):17334-17345. doi: 10.1039/c8ra00888d. eCollection 2018 May 9.
7
Biased Docking for Protein-Ligand Pose Prediction.
Methods Mol Biol. 2021;2266:39-72. doi: 10.1007/978-1-0716-1209-5_3.
8
Computational approaches for drug discovery against trypanosomatid-caused diseases.
Parasitology. 2020 May;147(6):611-633. doi: 10.1017/S0031182020000207. Epub 2020 Feb 12.
9
AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions.
Bioinformatics. 2019 Oct 1;35(19):3836-3838. doi: 10.1093/bioinformatics/btz152.
10
Solvents to Fragments to Drugs: MD Applications in Drug Design.
Molecules. 2018 Dec 11;23(12):3269. doi: 10.3390/molecules23123269.

本文引用的文献

1
Grid-derived structure-based 3D pharmacophores and their performance compared to docking.
Drug Discov Today Technol. 2010 Winter;7(4):e203-70. doi: 10.1016/j.ddtec.2010.09.002.
2
Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking.
J Chem Inf Model. 2013 May 24;53(5):1179-90. doi: 10.1021/ci400143r. Epub 2013 May 13.
3
Conformer generation with OMEGA: learning from the data set and the analysis of failures.
J Chem Inf Model. 2012 Nov 26;52(11):2919-36. doi: 10.1021/ci300314k. Epub 2012 Nov 12.
5
Significant enhancement of docking sensitivity using implicit ligand sampling.
J Chem Inf Model. 2011 Mar 28;51(3):693-706. doi: 10.1021/ci100457t. Epub 2011 Mar 4.
6
Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database.
J Comput Chem. 2011 Mar;32(4):742-55. doi: 10.1002/jcc.21643. Epub 2010 Sep 1.
9
Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
J Chem Inf Model. 2009 Jun;49(6):1455-74. doi: 10.1021/ci900056c.
10
Comparative assessment of scoring functions on a diverse test set.
J Chem Inf Model. 2009 Apr;49(4):1079-93. doi: 10.1021/ci9000053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验