Suppr超能文献

一种基于节点核心影响力的新型复杂网络聚类算法。

A novel complex networks clustering algorithm based on the core influence of nodes.

作者信息

Tong Chao, Niu Jianwei, Dai Bin, Xie Zhongyu

机构信息

School of Computer Science and Engineering, Beihang University, Beijing 100191, China ; School of Computer Science, McGill University, Montreal, QC, Canada H3A 0E9.

School of Computer Science and Engineering, Beihang University, Beijing 100191, China.

出版信息

ScientificWorldJournal. 2014 Mar 10;2014:801854. doi: 10.1155/2014/801854. eCollection 2014.

Abstract

In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.

摘要

在复杂网络中,由节点异质性所识别出的聚类结构已成为一种常见且重要的拓扑属性。因此,网络聚类方法对于复杂网络的研究具有重要意义。目前,许多典型的聚类算法存在诸如不准确和收敛速度慢等缺点。在本文中,我们提出了一种通过计算节点核心影响力的聚类算法。聚类过程是对社会学中聚类形成过程的模拟。该算法通过节点的介数中心性检测具有核心影响力的节点,并通过判别函数构建聚类的核心结构。接下来,通过优化方法对网络中其余节点进行聚类后,算法得到最终的聚类结构。在不同数据集上的实验表明,该算法的聚类准确率优于经典聚类算法(快速纽曼算法)。它聚类速度更快,在精确揭示复杂网络的真实聚类结构方面发挥了积极作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71c/3972856/b939f5c44d29/TSWJ2014-801854.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验