Suppr超能文献

使用介数中心性对一维周期性网络进行聚类。

Clustering 1-dimensional periodic network using betweenness centrality.

作者信息

Fu Norie, Suppakitpaisarn Vorapong

机构信息

JST, ERATO Kawarabayashi Large Graph Project, Global Research Center for Big Data Mathematics, National Institute of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-0003 Japan.

Department of Computer Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.

出版信息

Comput Soc Netw. 2016;3(1):6. doi: 10.1186/s40649-016-0031-1. Epub 2016 Oct 21.

Abstract

BACKGROUND

While the temporal networks have a wide range of applications such as opportunistic communication, there are not many clustering algorithms specifically proposed for them.

METHODS

Based on betweenness centrality for periodic graphs, we give a clustering pseudo-polynomial time algorithm for temporal networks, in which the transit value is always positive and the least common multiple of all transit values is bounded.

RESULTS

Our experimental results show that the centrality of networks with 125 nodes and 455 edges can be efficiently computed in 3.2 s. Not only the clustering results using the infinite betweenness centrality for this kind of networks are better, but also the nodes with biggest influences are more precisely detected when the betweenness centrality is computed over the periodic graph.

CONCLUSION

The algorithm provides a better result for temporal social networks with an acceptable running time.

摘要

背景

虽然时间网络在机会通信等领域有广泛应用,但专门针对它们提出的聚类算法并不多。

方法

基于周期图的中介中心性,我们给出了一种时间网络的聚类伪多项式时间算法,其中传递值始终为正,且所有传递值的最小公倍数是有界的。

结果

我们的实验结果表明,对于具有125个节点和455条边的网络,其中心性可在3.2秒内有效计算出来。不仅使用这种网络的无限中介中心性得到的聚类结果更好,而且在周期图上计算中介中心性时,能更精确地检测到具有最大影响力的节点。

结论

该算法在可接受的运行时间内为时间社交网络提供了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d553/5749596/39ff7b73e875/40649_2016_31_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验