Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain ; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
Department of Microbiology and Parasitology, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
J Immunol Res. 2014;2014:768515. doi: 10.1155/2014/768515. Epub 2014 Jan 12.
Perturbation methods add variation terms to a known experimental solution of one problem to approach a solution for a related problem without known exact solution. One problem of this type in immunology is the prediction of the possible action of epitope of one peptide after a perturbation or variation in the structure of a known peptide and/or other boundary conditions (host organism, biological process, and experimental assay). However, to the best of our knowledge, there are no reports of general-purpose perturbation models to solve this problem. In a recent work, we introduced a new quantitative structure-property relationship theory for the study of perturbations in complex biomolecular systems. In this work, we developed the first model able to classify more than 200,000 cases of perturbations with accuracy, sensitivity, and specificity >90% both in training and validation series. The perturbations include structural changes in >50000 peptides determined in experimental assays with boundary conditions involving >500 source organisms, >50 host organisms, >10 biological process, and >30 experimental techniques. The model may be useful for the prediction of new epitopes or the optimization of known peptides towards computational vaccine design.
扰动方法在一个已知的问题的实验解决方案中添加变化项,以接近没有已知精确解决方案的相关问题的解决方案。免疫学中的一个此类问题是预测已知肽结构发生扰动或变化以及其他边界条件(宿主生物体、生物过程和实验测定)后,一个肽的表位可能产生的作用。然而,据我们所知,没有用于解决这个问题的通用扰动模型的报道。在最近的一项工作中,我们引入了一种新的定量构效关系理论,用于研究复杂生物分子系统中的扰动。在这项工作中,我们开发了第一个模型,能够以 >90%的准确性、灵敏度和特异性对超过 200,000 个扰动案例进行分类,无论是在训练还是验证系列中。这些扰动包括在涉及 >500 个来源生物体、>50 个宿主生物体、>10 个生物过程和 >30 个实验技术的实验测定中确定的 >50000 个肽的结构变化。该模型可用于预测新的表位或优化已知肽以用于计算疫苗设计。