Suppr超能文献

基于遗传算法和 SVM 的从头构象表位结构预测在疫苗设计中的应用。

Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

机构信息

Department of Computer Science, Faculty of Computers and Information, Cairo University, Cairo, 12613, Egypt.

出版信息

Comput Methods Programs Biomed. 2018 Jan;153:161-170. doi: 10.1016/j.cmpb.2017.10.011. Epub 2017 Oct 12.

Abstract

BACKGROUND AND OBJECTIVE

T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system.

METHODS

In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance.

RESULTS

The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB10101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB10101 allele of the Wang benchmark dataset.

CONCLUSIONS

The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines.

摘要

背景与目的

T 细胞表位结构鉴定是基于表位的疫苗设计中一个重要的免疫信息学问题。表位或抗原肽是与主要组织相容性复合体(MHC)分子结合的一组氨基酸。这一过程的目的是由抗原呈递细胞呈现给 T 细胞进行检查。MHC 分子结合表位负责触发针对抗原的免疫反应。表位的三维(3D)分子结构(即三级结构)反映了其适当的功能。因此,鉴定 MHC Ⅱ类表位结构是基于表位的疫苗设计和理解免疫系统的重要步骤。

方法

在本文中,我们提出了一种使用遗传算法预测表位结构(GAPES)的新技术,用于根据序列预测 MHC Ⅱ类表位的结构。所提出的基于精英的遗传算法用于预测表位的三级结构,基于 Ab-Initio 经验构象能量程序(ECEPP)肽力场模型。开发的二级结构预测技术依赖于 Ramachandran 图。我们使用了两种对齐算法:ROSS 对齐和 TM-Score 对齐。我们应用了四种不同的对齐方法来计算测试数据集的相似性得分。我们利用支持向量机(SVM)分类器作为预测性能的评估。

结果

预测准确率和接收器操作特征(ROC)曲线下的面积(AUC)作为性能指标进行计算。在免疫表位数据库(IEDB)的 12 个相似性降低数据集和肽与 HLA-DRB10101 结合亲和力的大型数据集上进行了计算。结果表明,GAPES 是可靠且非常准确的。我们在 IEDB 数据集中实现了 93.50%的平均预测准确率和 0.974 的平均 AUC。此外,我们在 Wang 基准数据集的 HLA-DRB10101 等位基因上实现了 95.125%的准确率和 0.987 的 AUC。

结论

结果表明,所提出的预测技术“GAPES”是一种很有前途的技术,它将帮助研究人员和科学家预测蛋白质结构,并协助他们进行基于新表位的疫苗的智能设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验