Suppr超能文献

使用纳流液相色谱与微流自由电泳联用对肽进行全面多维分离。

Comprehensive multidimensional separations of peptides using nano-liquid chromatography coupled with micro free flow electrophoresis.

机构信息

Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.

出版信息

Anal Chem. 2014 May 20;86(10):5136-42. doi: 10.1021/ac500939q. Epub 2014 May 1.

Abstract

The throughput of existing liquid phase two-dimensional separations is generally limited by the peak capacity lost due to under sampling by the second dimension separation as peaks elute off the first dimension separation. In the current manuscript, a first dimension nanoliquid chromatography (nLC) separation is coupled directly with a second dimension micro free flow electrophoresis (μFFE) separation. Since μFFE performs continuous separations, no complicated injection or modulation is necessary to couple the two techniques. Analyte peaks are further separated in μFFE as they elute off the nLC column. A side-on interface was designed to minimize dead volume in the nLC × μFFE interface, eliminating this as a source of band broadening. A Chromeo P503 labeled tryptic digest of BSA was used as a complex mixture to assess peak capacity. 2D nLC × μFFE peak capacities as high as 2,352 could be obtained in a 10 min separation window when determined according to the product of the first and second dimension peak capacities. After considering the orthogonality of the two separation modes and the fraction of separation space occupied by peaks, the usable peak capacity generated was determined to be 776. The 105 peaks/min generated using 2D nLC × μFFE was nearly double the previously reported maximum peak capacity production rate achieved using online LC × LC.

摘要

现有的液相二维分离的通量通常受到由于第二维分离的采样不足而导致的峰容量损失的限制,因为峰在离开第一维分离时被洗脱。在本手稿中,将一维纳流液相色谱(nLC)分离直接与二维微自由流电泳(μFFE)分离相耦合。由于 μFFE 进行连续分离,因此不需要复杂的进样或调制来耦合这两种技术。当分析物峰从 nLC 柱洗脱时,它们在 μFFE 中进一步分离。设计了侧进样接口,以最小化 nLC × μFFE 接口中的死体积,从而消除了这一导致带宽展宽的因素。采用 Chromeo P503 标记的 BSA 胰蛋白酶消化物作为复杂混合物来评估峰容量。当根据第一维和第二维峰容量的乘积来确定时,在 10 分钟的分离窗口中,可以获得高达 2352 的 2D nLC × μFFE 峰容量。在考虑到两种分离模式的正交性和峰占据的分离空间的分数后,确定可用的生成峰容量为 776。使用 2D nLC × μFFE 生成的 105 个峰/分钟几乎是先前报道的使用在线 LC × LC 实现的最大峰容量产生速率的两倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验