Suppr超能文献

福岛第一核电站铯-137模拟沉降对NAME中湿沉降参数化的敏感性。

Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME.

作者信息

Leadbetter Susan J, Hort Matthew C, Jones Andrew R, Webster Helen N, Draxler Roland R

机构信息

Met Office, Exeter, United Kingdom.

Met Office, Exeter, United Kingdom.

出版信息

J Environ Radioact. 2015 Jan;139:200-211. doi: 10.1016/j.jenvrad.2014.03.018. Epub 2014 Apr 18.

Abstract

This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition.

摘要

本文描述了一项关于不同气象数据集和不同湿清除系数对2011年3月福岛第一核电站事故后放射性核素沉降模型预测影响的调查。三个独立的业务气象数据集,即英国气象局全球气象数据、欧洲中期天气预报中心全球气象数据以及日本气象厅(JMA)中尺度气象数据,以及日本气象厅的雷达降雨分析数据,均被用作英国气象局扩散模型NAME(数值大气扩散建模环境)的输入数据。基于这些气象模型对铯 - 137沉降的模型预测结果与日本东部沉降观测结果均显示出良好的一致性,相关系数在0.44至0.80之间。出乎意料的是,与观测结果相比,使用雷达降雨数据运行的NAME模型的相关系数(R = 0.66)低于使用日本气象厅中尺度模型降雨数据运行的结果(R = 0.76)或使用欧洲中期天气预报中心气象数据运行的结果(R = 未提及)。此外,还研究了修改湿沉降参数化中使用的湿清除系数的影响。结果表明,修改清除参数对根据模型和观测沉降比较计算出的排名的影响,与修改驱动气象条件的影响相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验